Смекни!
smekni.com

Подводные киносъемки (стр. 2 из 3)

Кессон был помещен между двумя металлическими цилиндрами (поплавками) с заостренными концами, которые способствовали плавучести, а сама конструкция крепления была достаточно жесткой, что создавало ей необходимую прочность и устойчивость на воде. Кессон, помещенный между двумя плавучими цилиндрами, мог сократить влияние качания воды на камеру. Вся эта плавучая конструкция закреплялась якорем на лебедке и двумя канатами, идущими к берегу. Выбирая якорь или отпуская канаты, оператор мог легко передвигаться в зависимости от надобности то ближе, то дальше от снимаемого объекта. В итоге оператору удавалось ежедневно делать по 20-25 снимков (кадров).

Шаг за шагом киноаппарат Медведева проследил за влиянием окружающей среды на организм человека, погружающегося на различные глубины. Аппарат наглядно и убедительно запечатлел на пленке различные сложнейшие моменты, характеризующие физиологию и патологию водолазного труда: возможные заболевания водолаза при работах на разных глубинах и необходимые меры их предупреждения; условия работы в кислородно-водолазном скафандре и правила пользования дыхательным аппаратом; работу водолаза в мягких и в кислородно-дыхательных скафандрах; общий цикл работы водолаза под водой и т. д. В результате советская теория и практика водолазного дела получили ценнейшее научное исследование, открывающее большие перспективы дальнейшего развития.

Современная техника подводных киносъемок крайне разнообразна.

Если перед исследователем поставлена задача произвести подводную съемку на малых глубинах, такая съемка обычно производится с поверхности моря, для чего применяются так называемые "водяные стереоскопы".

Водяной стереоскоп представляет собой четырехугольный застекленный ящик, который, будучи наглухо соединен со съемочным киноаппаратом, погружается для съемок, в воду на несколько сантиметров. Съемка производится через стеклянные стенки ящика косо поставленным аппаратом, что дает возможность устранить обычное преломление световых лучей на поверхности воды

Для научных исследований, проводимых на больших глубинах, современная кинематография располагает более совершенной техникой, в частности, специальными аппаратами и водолазными колоколами.

С борта судна в море опускается большая труба, внутри которой может легко передвигаться человек. На конце трубы устроена небольшая рабочая камера для исследователя (оператора), с большим окном из толстого стекла, выходящим в море. В рабочей камере устанавливается киносъемочный аппарат.

На глубине до пяти метров для съемок обычно пользуются дневным солнечным светом. На больших глубинах - с судна опускают специальные рефлекторные осветительные приборы большой мощности, позволяющие создавать требуемую освещенность снижаемых объектов. Применение таких приборов открыло большие возможности для научно исследовательской работы на больших морских глубинах.

Съемки с помощью специального водолазного колокола получили широкое распространение в кинематографии после известных опытов инженера Г. Гартмана, сделавшего много ценных подводных киноснимков с помощью сконструированного им водолазного колокола и подводного телескопа.

Чрезвычайно интересны и ценны в научном смысле киносъемки, производимые на дне моря свободно плавающими водолазами.

Первые сведения о подобного рода съемках были сообщены несколько лет назад из Вены.

В 1925 г. Гартман производил съемки в Неаполитанском заливе и обнаружил на дне моря остатки старинного города Палеополиса, являющегося одной из древнейших греческих колоний на итальянском побережье. В дальнейшем он обнаружил еще один древний город (между тунисским берегом и Сицилией), а также знаменитый Колосс Родосский, поглощенный морем в Родосским порту.

Молодой зоолог Г. Хасс и его два товарища И. Боллер и А. Вурциан вели жизнь «настоящих робинзонов» на маленьком острове в Караибском море. Плавая, они ныряли в фантастическую страну коралловых рифов и наблюдали там в естественном окружении обитателей морского дна, проводя изо дня в день по 4-5 часов под водой.

Все их снаряжение состояло из водонепроницаемых очков, маленького ручного киносъемочного аппарата в водонепроницаемой обшивке и плавников из резины со стальной прокладкой, которые значительно облегчали плавание. Что бы подольше пробыть под водой, исследователи нередко пользовались водолазным шлемом, в который накачивался воздух из лодки, находившейся на поверхности моря. Им удалось заснять жизнь черепах, огромных скатов, стаи акул и т. д.

Однако при всех своих положительных качествах существующие методы подводных киносъемок имеют большие недостатки: обитатели морского дна бывают так возбуждены присутствием аппаратов и особенно человека, что несмотря на тщательную предосторожность, соблюдаемую при съемках, или вообще не дают заглянуть в их интимную жизнь, или часами и днями "привыкают" к своим новым пришельцам. Лишь в последнем случае исследователю удается добиться поставленной цели. Поэтому биологические процессы (размножение, "игра" и т. д.), происходящие в подводном животном царстве, лучше всего удается заснять в больших аквариумах, где подлинный подводный ландшафт точно воспроизводится.

Кроме того, организация подводных съемок встречается с рядом трудностей, над устранением которых сейчас работают наши ученые и инженеры.

На съемочный процесс под водой оказывают огромное влияние физические свойства воды (влияния растворенных в воде веществ на оптические свойства водной среды, изученные еще крайне недостаточно), наличие так называемых "подводных туманов", вызываемых находящихся в воде частичек во взвешенном состоянии, неоднородность спектрального состава света на различных глубинах, состояние дна и т. д. Изучение всех этих явлений, определение в этой области закономерностей - одна из первоочередных и важнейших задач в научной кинематографии.

2.2 Современный этап в подводных киносъемках и их особенности

Современный уровень техники позволяет вести киносъёмку также и на глубинах, недоступных аквалангистам. В этом случае киноаппарат управляется дистанционно (иногда с телевизионным контролем снимаемого сюжета); для компенсации давления воды на бокс внутри последнего создаётся противодавление (сжатым газом). При слабой освещённости снимаемых объектов применяются осветительные установки, приспособленные для работы под водой. В связи с большим светорассеянием воды в естественных водоёмах (из-за механической взвеси, планктона и пр.) Подводная киносъёмка, как правило, производится с использованием цветной киноплёнки повышенной контрастности.

Всё подводное оборудование, (рис.1) изготовляется с учетом особенностей киносъемки под водой:

1) преломления, рассеивания и поглощения света в водной среде и изменения его спектрального состава;

2) наличия давления и гидродинамического сопротивления воды;

3) возможности коррозии металлов;

4) необходимости быстрой перезарядки аппарата и автономности его и электропитания.

В наши дни широко используются специальные боксы, (рис.2) Боксы -это универсальные герметичные чехлы для различных киносъемочных камер. Водонепроницаемый подводный чехол защищает профессиональные видеокамеры и фотоаппараты при погружении в воду. Чехлы предохраняют видео- и фототехнику, в том числе от морской и соленой воды, пыли и песка. Подводная съемка с такими чехлами позволяет делать снимки (ввиду того, что окно для объектива изготовлено из стекла), не искаженные и передающие насыщенный красками подводный мир во всей его красоте.

Главная особенность данного вида съёмок – это среда, в которой они ведутся, ведь вода дает дополнительное давление помимо атмосферного. Гидростатическое давление жидкости увеличивается по мере погружения на 1 кг/см кв. через каждые 10 метров. Так уже на 10 метровой глубине мы окажемся под давлением в 2 кг/см кв., а на 30 метрах - 4 кг/см кв.

Само по себе повышенное давление на глубине до 40 метров вредного влияния на наш организм не оказывает. На съемки влияет и видимость, (рис.3). Дневной свет даже в океане, далеко от берегов, довольно быстро ослабевает с глубиной. Происходит это в результате двух взаимосвязанных процессов: поглощения и рассеяния света в толще воды. Поглощение - довольно сложное физическое явление. Энергия света заставляет молекулы воды активнее перемещаться, т.е. превращается в тепло. Свет также сильно поглощается растворенными и взвешенными в воде органическими и неорганическими веществами.

Чистая морская вода обладает способностью поглощать свет избирательно. Красный цвет, энергия которого минимальна, полностью исчезает на глубине около 5 метров (хотя наше зрение, благодаря некоторой адаптации, позволяет различить красное до глубины около 10 метров, но камера передаст его черным).

Затем исчезают оранжевый и желтый цвета. Поэтому ниже 10-15 метров мы все видим в сине-зеленом свете. На большие глубины проникают только синие и фиолетовые коротковолновые лучи.

Вода также сильно рассеивает свет во всех направлениях. Мягкий, ненаправленный свет под водой сглаживает очертания предметов, выравнивает рельеф, растворяет в синеватой дымке все, что находится на расстоянии нескольких метров от нас. Резко снижается яркостной и цветовой контраст. Все это вместе мешает распознавать под водой даже знакомые предметы.

На прозрачность и цвет воды сильно влияет присутствие в ней взвешенных частиц и планктона. Так вода рек и водохранилищ, несущая много земли, имеет красновато-желтый или желто-зеленый оттенок, в то время как вода тропических морей вблизи коралловых рифов - изумрудного цвета.