Смекни!
smekni.com

Классификация продовольственных товаров (стр. 4 из 5)

При гомоферментативном типе ферментация обусловлена молочнокислыми палочковидными бактериями, которые делят на две группы – термофильные микроорганизмы Lactobacilluslactis, L. Acidophilus и др., которые развиваются при температуре 450С и выше, и стрептобактерии. При таком типе ферментации из глюкозы образуется только молочная кислота. Процесс гомоферментативного брожения можно показать в виде следующей формулы:

С6Н12О6 = 2СН3СНОН ∙ СООН

Гомоферментативные молочнокислые бактерии имеют все необходимые ферменты, вкючая альдолазу. Расщипление глюкозы происходит через образование фруктозо-1,6-дифосфата, т.е. гликолетическим путем, до пировиноградной кислоты. При этом пировиноградная кислота подвергается декарбоксилированию, так как гомоферментативные бактерии лишены карбоксилазы, а под действием фермента дегидрогеназы с активной группой восстанавливается в молочную кислоту.

При гетероферментотивном типе ферментации процесс обусловлен жизнедеятельностью бактерий Leuconostoc, Lactobacillus и др. Процесс гетероферментативного процесса можно представить в следующем виде:

С6Н12О6 = СН3СНОН ∙ СООН + СН3СН2ОН + СО2

При гетероферментативном брожении кроме молочной кислоты образуются также уксусная и янтарная кислоты, этиловый спирт, а также выделяются углекислый газ и водород. Гетероферментативные молочнокислые бактерии не имеют ферментов альдолазы и триозофосфаттизомеразы, поэтому начальное расщепление глюкозы происходит по пентозофосфатному пути, т.е. через глюкозо-6-фосфат, 6-фосфат-глюконат, рибулозо-5-фосфат и ксилозо-5-фосфат. В отличии от первой группы бактерий гетероферментативные бактерии имеют фермент карбоксилазу, под действием которой часть пировиноградной кислоты декарбоксилирует с образованием СО2 и ацетальдегида. Последний может служить акцептором водорода, а также окисляться в уксусную кислоту.

Прибифидобактериальном типе ферментации основой процесса является жизнедеятельность молочнокислых бактерий, не образующих спор. Оптимум жизнедеятельности данных бактерий достигается при температуре 36-380С. В основном используются два производственных штамма бифидобактерий: Bifidumbifidi№ 791 и Bifidumlongum № 379 M. Бифидобактерии при ферминтации образуют из глюкозы две кислоты – уксусную и молочную. Бифидобактериальный тип ферментации схематично можно выразить следующей формулой:

С6Н12О6 = 3СН3СООН + 2СН3СНОН ∙ СООН

При ферментации плодов и овощей могут протекать нежелательные типы брожения – пропионовокислое и маслянокислое. Пропионовокислые бактерии сбраживают молочную кислоту и превращают ее в пропионат и ацетат. Для предотвращения нежелательных типов брожения применяют чистые культуры молочнокислых бактерий, однако основным условием для получения продукции высокого качества является строгое соблюдение санитарных правил и технических режимов при производстве

Одним из условий, благоприятствующих развитию молочнокислого брожения, является использование сырья, содержащего достаточное количество сахаров, при недостатке сахаров в сырье накопление молочной кислоты протекает медленно и в малых количествах. Важным условием получения продукции высокого качества является поддержание благоприятной температуры для нормального протекания молочнокислого брожения. Существенное значение при квашении овощей и плодов имеет создание анаэробных условий, так как молочнокислые бактерии являются факультативными анаэробами, которые не требуют для своего развития наличия кислорода, в то время как уксуснокислые бактерии и многие плесени, ухудшающие вкус и запах квашенных продуктов, относятся к аэробам, развивающимся только в присутствии кислорода воздуха.

Квашеные овощи являются низкокалорийными продуктами. Они ценятся как источники органических кислот, в основном молочной, и минеральных веществ, среди которых наибольший удельный вес приходится на натрий, хлор и калий. Витаминами квашеные овощи небогаты, за исключением квашеной капусты, отличающейся высоким содержанием аскорбиновой кислоты (20-40 мг%).

Квашеные овощи содержат хлорид натрия в небольших количествах, в среднем до 2 %.

Квашеная капуста бывает следующих видов: шинкованная – без добавок и с добавками (нарезанная полосками шириной до 5 мм), рубленая (частицы неправильной формы, размером в наибольшем измерении не более 12 мм), качанное шинкование (с частицами капустных листьев), кочанная с рубленой, цельнокочанная (цельные кочаны).

Хранение квашеных овощей желательно при достаточно низкой температуре. Капусту квашеную в бочках хранят при температуре -1- +40С не более 8 мес. Относительная влажность воздуха должна быть в пределах 85-95%.

4.2 Сушка овощей и плодов

Сушка плодов и овощей – это способ консервирования, основанный на удалении влаги или части влаги, при котором повышается концентрация субстрата до пределов, при которых становится невозможным нормальный обмен веществ в клетках. Сушка плодов и овощей – сложный процесс, включающий не только физическое испарение воды, но и физико-химические изменения, происходящие в тканях и внутриклеточных структурах.

Традиционно овощи сушат до остаточной влажности 10-12%, плоды – 18-25%. Процесс сушки является одновременно диффузионным и тепловым, в результате которого изменяются свойства высушиваемого продукта. В процессе сушки влага удаляется из продукта не полностью, а до значения равновесного содержанию, соответствующего параметрам сушильного агента, в качестве которого может выступать нагретый воздух. Известно, что вода находится в свежих овощах и плодах в свободном и связанном состоянии, при этом свободной воды значительно больше. Для удаления свободной воды необходимо затратить энергию большую, чем энергия связи молекул воды между собой, а также другими веществами, например с белками протоплазмы клеток. Силы взаимодействия одноименных молекул называют силами когезии, а силы взаимодействия разноименных молекул – силами адгезии. Когезионные силы и силы адгезии в основном представлены водородными связями.

Процесс сушки протекает неравномерно во времени, чем ближе влажность продукта и сушильного агрегата к равновесию, тем медленнее протекает процесс. На скорость сушки влияет также содержание растворимых в воде веществ в продукте: чем ниже содержание этих веществ, тем легче испаряется влага и, соответственно, быстрее протекает процесс высушивания. И наоборот, чем выше содержание в клетках продукта растворимых в воде веществ, особенно обладающих омотической активностью, тем выше продолжительность сушки.

Интенсивность сушки характеризует кривая сушки. Первый период сушки характеризуется постоянной скоростью испарения, второй – уменьшением скорости испарения влаги. Скорость сушки характеризуется количеством влаги, испарившейся за единицу времени. С изменением содержания влаги в растительном продукте изменяется температура продукта: в первый период при интенсивном испарении влаги температура поверхности продукта не может превышать температуры испарения; во второй период сушки – на поверхности, а затем в глубинных слоях высушиваемого продукта температура повышается и, к концу сушки, достигает значения температуры сушильного агента.

В первый период сушки после нагревания продукта свободная влага испаряется с его поверхности равномерно с постоянной скоростью, равной или стремящейся к скорости испарения воды со свободной поверхности. В период убывающей скорости сушки часть тепла затрачивается не преодоление сил связи воды с веществами продукта, а затем испарение ее происходит аналогично испарению свободной влаги – путем перемещения ее из центральных слоев овощей и плодов к периферийным слоям. По мере испарения воды с поверхности плодов и овощей нарушается равновесие осмотических давлений в их периферийных и центральных слоях.

В период постоянной скорости сушки овощей и плодов в сушилках поддерживают боле высокие температуры сушильного агента, так как в этот период объект сушки не перегревается. Чрезмерно высокие температуры сушки во второй период могут служить причиной негативных изменений объекта сушки: значительной усадки, низкой набухаемости, приобретение коричневой окраски, снижение интенсивности аромата и вкуса, разрушение витамина С и других.

Таким образом, плоды и овощи до наступления равновесной влажности, соответствующей относительной влажности и температуры теплоносителя. При этом происходит испарение воды с поверхности продукта, перемещение воды из внутренних слоев к периферийным, теплообмен между продуктом и теплоносителем, а так же процессы, связанные с изменением окраски плодов и овощей и других их свойств.

Испарение воды с поверхности высушиваемых овощей и плодов является эндотермическим процессом, сопровождаемым поглощением большого количества тепла, затрачиваемого на сообщение молекулам воды достаточной кинетической энергии, превышающей энергию сил когезии между молекулами воды, а также адгезионных сил между молекулами воды и другими веществами – белковыми частицами и другими.

Аппараты, применяемые для сушки овощей и плодов, различаются между собой способом подведения тепла к продукту. Существуют следующие способы сушки: конвективная, кондуктивная 9контактная), при помощи инфракрасных лучей (термоизлучение), с использованием токов высокой и сверхвысокой частоты.

Конвективная сушка. Данный способ основан на том, что агент сукшки (например, нагретый воздух) выполняет функцию теплоносителя и влагопоглотителя. Преимущество данного способа обусловлено возможностью регулировать температуру высушиваемого продукта. Недостатками этого метода является направление градиента температуры в сторону, противоположную градиенту влагосодержания, что тормозит удаление влаги из продукта.