Кислотность - показатель свежести молока, один из основных критериев оценки его качества. В молоке определяют титруемую и активную кислотность.
Активная кислотность определяется концентрацией свободных ионов водорода и выражается водородным показателем — отрицательный логарифм концентрации свободных ионов водорода, находящихся в растворе, выражается в единицах рН.
В свежем молоке рН = 6,68,то есть молоко имеет слабо-кислую среду. Активная кислотность определяется потенциометрическим методом на рН-метре.
Молоко имеет слабо-кислую среду, так как в нем присутствуют соли (фосфорнокислых и лимоннокислых), белки и углекислый газ.
Титруемая кислотность измеряется в градусах Тернера (°Т). В соответствии с ГОСТ 3624 титруемая кислотность показывает количество кубических сантиметров децинормального (0,1 N) раствора щелочи, пошедших на нейтрализацию 100 см³ молока или 100 г продукта с двойным объемом дистиллированной воды в присутсвии индикатора фенолфталеина. Момент окончания титрования — это появление слабо-розового окрашивания, которое не исчезает в течение 1 минуты. Титруемая кислотность свежевыдоенного молока 16-18°Т, допустимое значение для нормального молока 15,99-20,99°Т.
В западных странах используют другие единицы измерения титруемой кислотности:
градусы Соксклета-Хенкеля (°SH)- Германия, Чехия, Польша, Словакия. При определении этой кислотности используют щелочь 0,25N.
градусы Дорника (°D)- Голландия, используют щелочь 0,09N.
в процентах молочной кислоты (% молочной кислоты) — США, Куба.
Буферность. Буферные системы обладают способностью поддерживать постоянный рН среды при добавлении кислот и щелочей. Они состоят из слабой кислоты и ее соли, образованной сильным основанием, или из смеси двух кислых солей слабой кислоты. Чем выше в молоке содержание буферных свойств, тем больше потребуется кислоты или щелочи для изменения его рН. Количество кислоты, которое необходимо добавить к 100 см³ молока, чтобы изменить его рН на единицу, называется буферной емкостью молока.
Окислительно-восстановительный потенциал — это способность составных веществ молока присоединять или терять электроны. Молоко содержит химические соединения, способные легко окисляться и восстанавливаться: витамин С, витамин Е, витамин В, аминокислоту цистеин, кислород, ферменты. Окислительно-восстановительный потенциал молока обозначается Е и равен 0,25-0,35 В. Е определяют потенциометрическим методом. Факторы, влияющие на изменение Е:
Нагревание молока уменьшает Е
Наличие металлов резко повышает Е
Наличие микроорганизмов повышает Е
Окислительно-восстановительный потенциал молока служит косвенным методом определения бактериальной обсемененности молока.
Бактерицидные свойства молока.
В молоке после дойки содержатся микроорганизмы, количество которых в течение 2 часов не только не увеличивается, но и понижается. Способность молока подавлять действие микроорганизмов называется бактерицидными свойствами, а период времени, в течение которого в молоке проявляются бактерицидные свойства называется бактерицидной фазой.
Бактерицидные свойства молока обусловлены наличием в нем ферментов (лизоцим, пероксидаза), иммуноглобулинов, лейкоцитов.
Бактерицидная фаза зависит от:
1. бактериальной обсемененности, которая зависит от соблюдения санитарно-гигенических условий
2. температуры молока (чем выше, тем короче б. фаза)
Если молоко после дойки сразу очистить и охладить до 4 °C, то продолжительность бактерицидной фазы составит 24 часа, если до 0°С — до 48 часов.
Физические свойства молока.
Плотность — масса молока при t=20 °C, заключенная в единице объема. Плотность является одним из важнейших показателей натуральности молока. Измеряется в г/см³, кг/м³ и в градусах Ареометра (°А) — условная единица, которая соответствует сотым и тысячным долям плотности, выраженной в г/см³ и кг/м³.
Плотность натурального молока не должна быть ниже 1,027г/см³ =1027кг/м³=27°А . Плотность сырого молока не должна быть менее 28°А, для сортового не менее 27°А. Если плотность ниже 27°А, то можно подозревать, что молоко разбавлено водой: добавление к молоку 10 % воды снижает плотность на 3°А .
Плотность молока является функцией его состава, то есть зависит от содержания жира. Плотность обезжиренного молока выше, чем средняя, плотность сливок ниже, чем средняя плотность молока. Основной метод определения плотности — ареометрический.
Вязкость — свойство жидкости оказывать сопротивление при перемещении одной части отностельно другой. Вязкость измеряют в Па·с, в среднем при t = 20 °C вязкость равна 0,0018 Па·с. Вязкость зависит от массовой доли сухих веществ, а наибольшее влияние оказывают белки, жиры, а также их агрегатные состояния.
Основные факторы, влияющие на вязкость молока:
1. Массовая доля жира и степень его диспергирования: чем больше жира и меньше размеры жировых шариков, тем выше показания вязкости. Вязкость гомогенезированного молока выше, чем негомогенезированного, так как увеличивается суммарная поверхность жировой фазы.
2. Массовая доля сухих веществ в молоке: чем больше, тем вязкость больше.
3. Температурная обработка: повышение t молока до 55 °C приводит к снижению вязкости за счёт более равномерного распределения составных веществ молока и расплавления тугоплавких триглицеридов, входящих в состав молочного жира. Дальнейшее повышение t приводит к увеличению вязкости, так как происходит денатурация сывороточных белков и осаждение их на мицеллах казеина.
4. Агрегатное состояние казеина: оно может направленно изменяться при технологической обработке молока в процессе приготовления некоторых кисломолочных продуктов (творог, кефир), вязкость при этом увеличивается.
Вязкость определяется на вискозиметрах Оствальда, Гепплера и ротационном.
Поверхностное натяжение выражается силой, действующей на единицу длины границы раздела двух фаз воздух — молоко. Поверхностное натяжение измеряется в Н/м и составляет для воды 0,0727 Н/м, для молока 0,05 Н/м. Более низкое поверхностное натяжение молока объясняется наличием в нем поверхностно активных веществ (ПАВ) в виде белков плазмы молока, оболочек жировых шариков, фосфолипидов и жирных кислот.
Поверхностное натяжение зависит от:
t среды
химического состава молока
режимов технологической обработки
продолжителности хранения молока
содержания кислорода
агрегатного состояния белков и жира
активности фермента липаза
В прямой зависимости от поверхностного натяжения находится пенообразование молока.
Осмос — односторонняя диффузия растворителя в раствор. Сила, обуславливающая осмос, отнесенная к единице поверхности полупроницаемой мембраны — осмотическое давление. Осмотическое давление молока нормального состава — относительно постоянная величина = 0,66 МПа. Оно обусловлено содержанием в молоке минеральных солей и лактозы. Чем выше осмотическое давление, тем меньше вероятность развития микроорганизмов в молочных продуктах. Этот принцип используется в технологии консервов, а также в производстве, где используется сироп (сахар).
Осмотическое давление рассчитывают по t замерзания молока, так как t замерзания тоже зависит от массовой доли лактозы и минеральных веществ. t замерзания — постоянная величина, в среднем составляет - 0,555 °C (по ГОСТ 52054 не выше — 0,520 °C). Разбавление молока водой приводит к повышению t замерзания. По её величине судят о натуральности молока. t замерзания определяют криоскопическим методом.
Электропроводность молока — величина обратная электрическому сопротивлению. Она характеризуется способностью раствора проводить электричество, электропроводность измеряют Сименс/м. Молоко — плохой проводник электричества, но электропроводность может увеличиваться в маститном молоке за счет изменения состава минеральных веществ. Электропроводность обусловлена наличием в молоке ионов водорода, калия, натрия, кальция, магния и хлора. Для молока = 0,46 Сименс/м.
1.4 Тепловая и вакуумная обработка молока питьевого
Назначение и виды тепловой обработки. Свежевыдоенное молоко имеет температуру тела животного - около 37°С, которая затем снижается до температуры помещения, т.е. около 20-25°С. Этот диапазон температур оптимален для развития микроорганизмов, находящихся в сыром молоке. Для сохранения качества молока необходимо предотвратить размножение микроорганизмов. Этого можно достичь тепловой обработкой молока, при которой в условиях повышенной температуры уменьшается количество микроорганизмов или происходит их полное уничтожение (термизация, пастеризация, стерилизация), либо снижением температуры (охлаждение и замораживание). Цель тепловой обработки - исключение передачи через молоко инфекционных заболеваний и повышение стойкости молока при хранении. Для усиления эффекта при производстве молочных продуктов сочетают нагрев молочного сырья до 100°С или выше с последующим немедленным охлаждением до температур, требуемых стандартом. Эффективность тепловой обработки зависит от резистентности микроорганизмов, устойчивости его составных частей и интенсивности тепловой обработки. Интенсивность тепловой обработки зависит от применяемой температуры, длительности ее воздействия и движения продукта в процессе переработки.
1.Охлаждение молочного сырья и молочных продуктов. В целях торможения развития микроорганизмов, ферментных и физико-химических процессов при охлаждении молочного сырья и молочных продуктов температуру понижают до 2-10°С и хранят при этой температуре до переработки. В зависимости от конечной температуры охлаждения в продуктах в большей или меньшей степени могут протекать физико=химические процессы. обусловленные действием ферментов и микробиологическими процессами. Понижение температуры приводит к подавлению жизнедеятельности микроорганизмов. Эффект воздействия низких температур на микробную клетку основан на нарушении сложной взаимосвязи метаболических реакций и повреждении механизма переноса растворимых веществ через клеточную мембрану. Наряду с этим имеет место изменение качественного состава микрофлоры. Некоторые группы микроорганизмов (психрофилы) способны достаточно быстро размножаться при температуре 0-5°С. Таким образом, охлаждение продуктов до низких температур не исключает возможности его микробиологической порчи, так как возбудителями порчи белковосодержащих продуктов являются преимущественно гнилостные бактерии. При отведении теплоты замедляется тепловое молекулярное движение и изменяется состояние компонентов молока, прежде всего преобладающим числом гидрофобных связей обладает казеин. При температуре около 60°С прочность гидрофобных связей самая высокая. По мере понижения температуры сила гидрофобных связей ослабевает, агломераты распадаются на более мелкие образования. Дезагрегация обратима, но только частично, причем обратный процесс протекает с меньшей скоростью. Поэтому после хранения молока длительное время при температуре 2-6°С способность его к свертываю сычужным ферментом заметно ухудшается. Полученный сгусток характеризуется способностью к синерезису и меньшей прочностью. Неустойчивость гидрофоных связей приводит к усилению активсноти ферментов. в первую очередь ксантиноксидазы и каталазы, связанных с казеином и белковыми компонентами жировых шариков в оболочке. Ксантиноксидаза катализирует окисление многих альдегидов до кислот, а каталаза - окисление пероксидами ненасыщенных жирных кислот и спиртов. При охлаждении молочного сырья происходят частичное отвердевание и кристаллизация молочного жира в жировых шариках, что и приводит к ослаблению связей в оболочках, так как глицеридный слой теряет эластичность и становится более подверженным механическим воздействиям. Охлаждение и хранение охлажденного молочного сырья приводит к разрушению витаминов. Например, витамин С разрушается на 18% при хранении охлажденного молока 2 сут и на 67% при хранении охлажденного молока 3 сут. При охлаждении молока происходит изменение состава микрофлоры сырого молока - замедляется рост мезофильной и термофильной микрофлоры и начинают преобладать психрофильные бактерии, развивающиеся в молоке от 5 до 15°С.