Смекни!
smekni.com

Особенности оценки качества молока коровьего питьевого в условиях действия Технического регламен (стр. 4 из 10)

2. Замораживание молочного сырья и молочных продуктов. При замораживании происходят более заметные физико-химические и биохимические изменения,чем при охлаждении, причем их глубина зависит от скорости замораживания и температуры хранения замороженных продуктов. Изменения обусловлены процессами кристаллизации воды, перераспределением влаги между структурными образованиями компонентов молока, повышением концентрации растворенных в жидкой фазе веществ. Влага, содержащаяся в молоке, обусловливает консистенцию и структуру продукта, определяя его устойчивость при хранении. Связанная влага имеет отличные от свободной влаги свойства. Она замерзает при более низких температурах, обладает меньшей способностью растворения, меньшей теплоемкостью, повышенной плотностью. Количество связанной влаги помимо его физико-химических свойств определяется его дисперсностью. С увеличением дисперсности продукта увеличивается количество связанной влаги. При медленном замораживании (-10°С) с образованием крупных кристаллов вне клеток изменяется первоначальное соотношение объемов межклеточного и внутриклеточного пространства за счет перераспределения влаги и фазового перехода воды. Быстрое замораживание (-22°С) предотвращает значительное диффузионное перераспределение влаги и растворенных веществ и способствует образованию мелких, равномерно распределенных кристаллов льда. Наиболее мелкие кристаллы образуются в поверхностных слоях продукта. При замораживании воды образуются кристаллы различной формы, имеющие острые вершины и кромки, вследствие чего они могут отрицательно воздействовать на грубодисперсные составные части. Максимальное кристаллообразование происходит при температуре от -2 до -8°С, поэтому, чтобы предотвратить образование крупных кристаллов льда при замораживании, необходимо обеспечить быстрое понижение температур в этом интервале. Кроме того, в этом интервале температур повышается содержание в невымороженной влаге растворенных веществ, увеличивается скорость некоторых реакций, высвобождаются ферменты и окисляются липиды. При медленном замораживании невымороженной остается около 4% свободной и 3,5% связанной влаги. В свободной влаге повышена концентрация белков, минеральных солей и лактозы. Это приводит к агрегации и дезагрегации казеиновых мицелл и потеря ими стабильности. Этому способствует кристаллизация лактозы при охлаждении и сильном перемешивании молока перед замораживанием. При медленном замораживании происходит частичная или полная денатурация белков. Такие изменения белков приводят к снижению способности свертываться под действием сычужного фермента.При медленном замораживании молочное сырье расслаивается. Замораживание сопровождается уменьшением количества и активности микроорганизмов без их полного уничтожения. Из-за изменения состояния белковолипидных комплексов и механического разрушения микробной клетки кристаллами льда возможны повреждения мембранных структур клетки. Наиболее высокая степень гибели микроорганизмов приходится при температурах -10...-12°С. Хранение при таких температурах позволяет сохранить продукты без микробиологической порчи.

3.Пастеризация молочного сырья. Основная цель пастеризации - уничтожение патогенной токсинообразующей микрофлоры и инактивация ферментов. В результате исключается передача через молоко и молочные продукты инфекционных заболеваний и обеспечивается более длительный срок хранения. В молоко от больной коровы, с рук переболевшего персонала, загрязненного корма, питьевой воды, посуды и т.д. могут попасть такие патогенные микроорганизмы, как возбудители туберкулеза, бруцеллеза, чумы, сибирской язвы, кишечная палочка и т.д. Эти заболевания могут через молоко передаваться человеку. Стойкость различных патогенных микроорганизмов к температуре неодинакова. Как правило, патогенные микроорганизмы погибают при относительно невысоких температурах. Наиболее стойкой к нагреванию из неспорообразующих микроорганизмов является туберкулезная палочка. Возбудтель туберкулеза погибает при температурах 60-65°С в течение 30 минут. Однако есть сведения, что для уничтожения туберкулезной палочки необходима более высокая температура (75°С с выдержкой 30 минут.) Это объясняется тем, что стойкость к температурным режимам в зависимости от многочисленных факторов у разных штаммов может быть не одинакова. Поэтому при использовании молока коров с подозрением на туберкулез необходимо нагревать его до температуры 80°С в течение 30 минут или кипятить. Молоко от заболевших животных необходимо уничтожать. Остальная неспорообразующая патогенная микрофлора погибает при более низких температурах, чем туберкулезная палочка. В связи с этим при обосновании режимов пастеризации молока за основу принимают темпловую обработку туберкулезной палочки. Одним из санитарно-показательных микроорганизмов, которые могут привести в различного рода токсикозам и кишечным отравлениям, являются бактерии группы кишечной палочки (БГКП). Наличие этих бактерий в молоке говорит о нарушении требуемых санитарно-гигиенических условий производства молока. Они не выдерживают нагрева молока до 60°С в течение 30 минут. С помощью пастеризации в молоке можно уничтожить лишь вегетативные формы микрофлоры, так как наличие спор повышает тепловую устойчивость микроорганизмов на 10-15, а иногда и на 50°С. Нагревание молочного сырья до температур пастеризации приводит к инактивации ферментов, тепловая устойчивость которых также индивидуальна, как и тепловая устойчивость микроорганизмов. Температурные режимы пастеризации, принятые в молочной промышленности, полностью инактивируют щелочную фосфатазу. Известно, что после нагревания молока до 65°С в течение 30 минут фосфатаза в нем не обнаруживается. Тепловая обработка фосфатазы используется в молочной промышленности для оперделения эффективности пастеризации молока при производстве питьевого пастеризованного молока. При производстве кисломолочных напитков или масла эффективность пастеризации определяется пробой на ксантиноксидазу, которая инактивируется при температурах около 80°С. Протеазы инактивируются при температурах выше 75°С, нативные липазы - при температуре 80°С, а бактериальные липазы - при температуре 90°С. Сущность теплового разрушения микроорганизмов и ферментов состоит в тепловой денатурации белковых компонентов клеток, при которой происходит развертывание их полипептидных цепей с потерей биологических свойств. Теоретические основы пастеризации описываются уравнением Дальберга - Кука применительно к туберкулезной палочке:

lnz=α - βt

где z- время воздействия температуры, (c); α,β - коэффициенты, равные 36,84 и 0,48 соответственно; t - температура пастеризации,(°C). Уравнение показывает взаимозависимость температуры и времени для разрушения микроорганизмов и ферментов. На производстве фактическое время выдержки Q при тепловой обработке молочного сырья не должно быть меньше теоретических значений z. При Q=z процесс пастеризации считается проведенным правильно; при Q<z - процесс пастеризации не обеспечивает безопасность продукта; при Q>z - процесс пастеризации излишне длителен.Средний эффект пастеризации равен отношению Q/z. По предложению Кука эта величина была названа критерием Пастера и стала обозначаться символом Pa. Для любого бесконечно малого отрезка времени dQ элементарный эффект пастеризации равен dQ/z, а суммарный эффект за время z обозначается Pa=logdQ / z. Для завершения процесса пастеризации и обеспечения безопасности молочных продуктов критерий Пастера должен быть равен единице или больше ее. На основании теоретических выводов для производства молочных продуктов были разработаны три вида режимов пастеризации молочного сырья, обеспечивающие уничтожение туберкулезной палочки, бактерий группы кишечной палочки и других патогенных микроорганизмов и инактивацию ферментов: