Смекни!
smekni.com

Теория чисел Фибоначчи (стр. 2 из 14)

Специальные названия этому соотношению начали давать еще до того, как Лука Пачоли, средневековый математик, назвал его Божественной пропорцией. Среди его современных названий есть такие, как Золотое сечение, Золотое среднее и отношение вертящихся квадратов. Кеплер назвал это соотношение одним из "сокровищ геометрии". В алгебре общепринято его обозначение греческой буквой фи: Φ=1.618

Асимптотическое поведение последовательности, затухающие колебания ее соотношения около иррационального числа Φ могут стать более понятными, если показать отношения нескольких первых членов последовательности. В этом примере приведены отношения второго члена к первому, третьего ко второму, четвертого к третьему, и так далее:

1:1 = 1.0000, что меньше фи на 0.6180

2:1 = 2.0000, что больше фи на 0.3820

3:2 = 1.5000, что меньше фи на 0.1180

5:3 = 1.6667, что больше фи на 0.0486

8:5 = 1.6000, что меньше фи на 0.0180

По мере нашего продвижения по суммационной последовательности Фибоначчи каждый новый член будет делить следующий с все большим и большим приближением к недостижимому Φ.

Ниже мы увидим, что отдельные числа из суммационной последовательности Фибоначчи можно увидеть в движениях цен на товары. Колебания соотношений около значения 1.618 на большую или меньшую величину мы обнаружим в Волновой теории Эллиотта, где они описываются Правилом чередования.

Человек подсознательно ищет Божественную пропорцию: она нужна для удовлетворения его потребности в комфорте.

При делении любого члена последовательности Фибоначчи на следующий за ним получается просто обратная к 1.618 величина (1: 1.618=0.618). Но это тоже весьма необычное, даже замечательное явление. Поскольку первоначальное соотношение – бесконечная дробь, у этого соотношения также не должно быть конца.

При делении каждого числа Фибоначчи на следующее за ним через одно, получаем число 0.382. Заметим еще, что 1:0.382=2.618

Подбирая, таким образом, соотношения, получаем основной набор коэффициентов Фибоначчи: 4.235,2.618,1.618,0.618,0.382,0.236. Упомянем также 0.5. Все они играют особую роль в природе, технике, искусстве и, в частности, в финансовом техническом анализе.

Теория чисел Фибоначчи выросла из знаменитой "задачи о кроликах", имеющей почти восьмисотлетнюю давность; числа Фибоначчи до сих пор остаются одной из самых увлекательных глав элементарной математики. Задачи, связанные с числами Фибоначчи, приводятся во многих популярных изданиях по математике, рассматриваются на занятиях школьных и студенческих математических кружков, предлагаются на математических олимпиадах.

Числа Фибоначчи проявили себя еще и в нескольких математических проблемах, среди которых в первую очередь следует назвать решение Ю. В. Матиясевичем десятой проблемы Гильберта и далеко не столь глубокую, но приобретшую широкую известность теорию поиска экстремума унимодальной функции, построенную впервые, по-видимому, Дж. Кифером.

Наконец, было установлено довольно большое количество ранее неизвестных свойств чисел Фибоначчи, и к самим числам сегодня существенно возрос интерес. Значительное число связанных с математикой людей в различных странах приобщилось к благородному хобби "фибоначчизма". Наиболее убедительным свидетельством этому может служить журнал "The Fibonacci Quarterly", издаваемый в США с 1963 г.

Пропорции Фибоначчи благодаря усилиям многих энтузиастов обнаруживаются в самых неожиданных областях знания, через золотое сечение удается связать между собой совершенно разные теории и явления, что свидетельствует о фундаментальной роли теории чисел Фибоначчи в естествознании и в гуманитарных науках.

2. Математические свойства чисел Фибоначчи

Числа Фибоначчи (или последовательность Фибоначчи Fn) обладают целым рядом интересных и важных свойств. К их изучению мы сейчас и приступаем. Итак,

ОПРЕДЕЛЕНИЕ. Последовательность Фибоначчи Fn определяется рекуррентным соотношением:

F0 =0,

F1 =1,

Fn = Fn-1 + Fn-2,……для № > 1.(1)

Несколько первых значений представлены в таблице 1.

Таблица 1

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Fn 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

В отличие от многих знаменитых в математике чисел (например, гармонических чисел, чисел Бернулли и т. д.), числа Фибоначчи являют собой подкупающие своей бесхитростностью целые числа. Бесхитростность правила образования этих чисел – возможно, самого бесхитростного из всевозможных рекуррентных соотношений, в котором каждое число зависит от двух предыдущих – служит объяснением того, почему числа Фибоначчи встречаются в самых разнообразных ситуациях.

Простоту и естественность возникновения можно считать первым свойством чисел Фибоначчи. И по мере накопления информации о числах Фибоначчи эта простота становится только таинственней и привлекательней.

Одним из самых первых фактов о числах Фибоначчи, обнаруженным в 1680 г. французским астрономом Жан-Домиником Кассини, является соотношение:

Fn+1 Fn-1 – Fn2 = (-1)n при № > 0.(2)

Так, при № = 6 соотношение Кассини справедливо утверждает, что 13x5 – 82 = 1.(Этот закон был известен Иоганну Кеплеру еще в 1608 г.)

Многочленная формула, которая включает в себя числа Фибоначчи вида Fn±k при малых k, может быть преобразована в формулу, которая включает в себя только Fn и Fn+1, если воспользоваться правилом

Fm = Fm+2 – Fm+1 (3)

для выражения Fm через большие числа Фибоначчи при m < n, и если воспользоваться формулой

Fm = Fm-2 + Fm-1 (4)

для замены Fm меньшими числами Фибоначчи при m > n+1.Так, например, можно заменить Fn-i на Fn+1 – Fn в (2), получая соотношение Кассини вида:

Fn+12 – Fn+1Fn – Fn2 = (-1)n. (5)

Кроме того, если заменить № на № + 1, то соотношение Кассини принимает вид:

Fn+2Fn – Fn+12 = (-1)n+1;

это то же самое, что и (Fn+1 +Fn)Fn – Fn+12 = (– 1)n+1, а последнее совпадает с (5). Таким образом "Кассини(n)" справедливо тогда и только тогда, когда справедливо "Кассини (n + 1)" так что по индукции равенство (2) справедливо при любом n.

Соотношение Кассини лежит в основе геометрического парадокса, который был одной из излюбленных головоломок Льюиса Кэррола. Суть его в том, чтобы взять шахматную доску и разрезать ее на четыре части, как показано ниже на рис. 1, а затем составить из этих частей прямоугольник:

Рис. 1.

Первоначальные 8 х 8 = 64 клетки переставлены так, что получилось 5 х 13 = 65 клеток. Аналогичная конструкция расчленяет любой Fn х Fn-квадрат на четыре части с размерами сторон Fn+1, Fn, Fn-1 и Fn-2 клеток вместо соответственно 13, 8, 5, и 3 клеток в нашем примере. В результате получается Fn-1 х Fn+2-прямоугольник, и в соответствии с (2) одна клетка либо прибавляется, либо утрачивается – в зависимости от того, четно или нечетно n.

Строго говоря, мы не можем применять правило (4) кроме как при та m ≥ 2, ибо нами не определены Fn при отрицательном n. Мы обретем большую свободу действий, если избавимся от этого ограничительного условия и воспользуемся правилами (3) и (4) для доопределения чисел Фибоначчи при отрицательных индексах. Так, F-1 оказывается равным F1 – F0 = 1, a F-2 – равным F0 – F-1 = – 1. Действуя таким образом, выписываем величины:

n 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11
Fn 0 1 -1 2 -3 5 -8 13 -21 34 -55 89

и вскоре становится ясно (по индукции), что

F-n = (-l)n-1Fn, № – целое. (6)

Если обобщить последовательность Фибоначчи подобным образом, то соотношение Кассини (2) будет справедливым при любых целых n, а не только при № > 0.

Процесс сведения Тn±k к комбинации Fn и Fn+1 по правилам (4) и (3) приводит к последовательности формул:

Fn+2 = Fn+1 + Fn, Fn-1 = Fn+1 – Fn,

Fn+3 = 2Fn+1 + Fn, Fn-2 = – Fn+1 + 2Fn,

Fn+4 = 3Fn+1 + 2Fn, Fn-3 = 2Fn+1 – 3Fn,

Fn+5 = 5Fn+1 +3Fn, Fn-4 = – 3Fn+1 +5F,V,

в которой просматривается закономерность другого рода:

Fn+k = FkFn+1 + Fk-1Fn (7)

Это соотношение, которое легко доказывается по индукции, справедливо при любых целых k и № (положительных, отрицательных или равных нулю).

Если в (7) положить k = n, то выясняется, что:

F2n = FnFn+1 + Fn-1Fn; (8)

следовательно, F2n кратно Fn. Аналогично,

F3n = F2n Fn+1 + F2n-1 Fn,

и можно заключить, что F3n также кратно Fn. И, вообще, по индукции:

Fkn кратно Fn (9)

при любых целых k и n. Это объясняет, в частности, почему F15 (которое равно 610) кратно как F3, так и F5 (которые равны 2 и 5). Фактически справедливо даже большее: можно доказать, что:

НОД(Fm, Fn) = FНод(m,n) (10)

К примеру, НОД(F12, F18) = НОД(144,2584) = 8 = F6.

Теперь можно доказать обращение свойства (9): если № > 2 и если Fm кратно Fn, то m кратно n. Действительно, если Fn&bsol;Fm, то Fn &bsol; НОД(Fm, Fn) = FНод(m,n) ≤ Fn. А это возможно только тогда, когда FНод(m,n) = Fn и наше допущение о том, что № > 2 приводит к необходимости того, что НОД(m, n) = n. Следовательно, n&bsol;m.

Обобщение подобных понятий делимости было использовано Юрием Матиясевичем в его знаменитом доказательстве того, что не существует алгоритма, позволяющего выяснить, разрешимо ли в целых числах заданное полиномиальное уравнение относительно многих неизвестных с целыми коэффициентами. Одна из лемм Матиясевича утверждает следующее.