Смекни!
smekni.com

Теория чисел Фибоначчи (стр. 8 из 14)

Ключ к геометро-математическому секрету пирамиды в Гизе, так долго бывшему для человечества загадкой, в действительности был передан Геродоту храмовыми жрецами, сообщившими ему, что пирамида построена так, чтобы площадь каждой из ее граней была равна квадрату ее высоты.

Площадь треугольника

356 x 440 / 2 = 78320

Площадь квадрата

280 x 280 = 78400

Длина грани пирамиды в Гизе равна 783.3 фута (238.7 м), высота пирамиды – 484.4 фута (147.6 м). Длина грани, деленная на высоту, приводит к соотношению Ф=1.618.Высота 484.4 фута соответствует 5813 дюймам (5-8-13) – это числа из последовательности Фибоначчи.

Эти интересные наблюдения подсказывают, что конструкция пирамиды основана на пропорции Ф=1,618. Современные ученые склоняются к интерпретации, что древние египтяне построили ее с единственной целью – передать знания, которые они хотели сохранить для грядущих поколений.

Интенсивные исследования пирамиды в Гизе показали, сколь обширными были в те времена познания в математике и астрологии. Во всех внутренних и внешних пропорциях пирамиды число 1.618 играет центральную роль.

Пирамиды в Мексике. Не только египетские пирамиды построены в соответствии с совершенными пропорциями золотого сечения, то же самое явление обнаружено и у мексиканских пирамид. Возникает мысль, что как египетские, так и мексиканские пирамиды были возведены приблизительно в одно время людьми общего происхождения.

На поперечном сечении пирамиды видна форма, подобная лестнице. В первом ярусе 16 ступеней, во втором 42 ступени и в третьем – 68 ступеней.

Эти числа основаны на соотношении Фибоначчи следующим образом:

16 x 1.618 = 26

16 + 26 = 42

26 x 1.618 = 42

42 + 26 = 68

Интересно, что и на Марсе в районе Сидония обнаружены аномальные объекты, имеющие пирамидальную форму, а один из объектов напоминает человеческое лицо. Взаимное расположение этих объектов также связано с золотой пропорцией. Случайное ли это совпадение, или же "пирамиды" на Марсе служат неким знаком погибшей цивилизации? Данный вопрос еще ждет своего окончательного разрешения.

3.2. Последовательность Фибоначчи и хронология

В качестве инструмента хронологии усилиями некоторых ученых в конце XX века впервые была избрана гармоническая система числовых отношений, и, в частности, – ряд Фибоначчи.

Приметы такого ряда очевидны в хронологии эпох I тыс. н. э. – I тыс. до н. э. Числа ряда удачно фиксируют поздний железный век (I тыс. н. э.) и начало железного века (I тыс. до н. э.).

В интервале 5-2 тыс. до н. э. сосредоточены культуры энеолита, ранней и поздней бронзы Европы, к интервалу 8-5 тыс. до н. э. относят европейский мезолит и неолитические культуры Ближнего Востока. Правда, мезолит Ближнего Востока датируют иначе: 10-7 тыс. до н. э., а мезолит Восточной Европы – 11-6 тыс. до н. э.

Особенности в хронологии культур 10-5 тыс. до н. э. региональны. Они зависят, от неравномерности развития, которая возникла в верхнем палеолите и сохранялась на протяжении всего времени в дальнейшем.

Замеченные расхождения в хронологии археологических эпох имеют региональный масштаб, никак не затрагивают самой числовой последовательности, присущей ряду Фибоначчи: 1, 1, 2, 3, 5, 8. Очевидно, что в хронологии археологических культур более раннего времени, развитию которых присущ планетарный характер, следует ожидать более строгого соответствия ряду Фибоначчи.

Продолжим ряд, его составляют такие числа: 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1 597, 2 584, 4181 и т. д.

Сначала казалось удивительным: некоторые элементы этой последовательности, действительно, соответствуют хронологическим рубежам в древнейшей истории человечества, особенно если к числам добавить наименование "тыс. лет до н. э. ", или "тыс. лет тому назад", или просто "тыс. лет".

Так, позицию 233 тыс. лет в приводимой последовательности можно отождествить с датой рисского оледенения в Европе, общепризнанная геологическая дата которого 230 тыс. лет т. н. Позиция, соответствующая 377 тыс. лет, близка дате в 400 тыс. лет т. н. этому времени относят выход человечества из биоценоза.

Около середины II миллионолетия (1 597 тыс. л., согласно ряду) складывается древнейшая археологическая культура олдувай, в середине III миллионолетия (2 584 тыс. лет) появляются австралопитековые формы ископаемого человека, с которым связывают так называемое начало орудийности.

На протяжении 720-600 тыс. лет складывается трудовая традиция и формируется речь. Дата завершения этих процессов находится почти рядом с позицией ряда в 610 тыс. лет.

Действительно, эти рубежи разграничивают развитие человечества на отдельные этапы, которые иногда называют временными ступенями. Переход с одной временной ступени на другую считают эволюцией системы. Повторим ряд, обозначив жирным шрифтом те ступени, хронология которых проверена: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377, 610, 987,1 597, 2584.

Одиннадцать из 18 позиций ряда проверены и подтверждены с достаточной степенью надежности и точности. Иногда говорят, что одно подтверждение – случайность, два – совпадение, три – тенденция.

В нашем случае не три, а 60% совпадений проверены и подтверждены. Такое число подтверждений можно считать выражением не столько тенденции, сколько закономерности.

Итак, хронология и периодизация, можно сказать, исторического развития с помощью ряда Фибоначчи разделена на 18 временных ступеней, имеющих планетарный характер. Повторим их 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1 597, 2 584. События, хронология которых оказывается за пределами ряда, имеют региональный характер.

Хронологические границы археологических эпох и периодов, найденные с помощью ряда Фибоначчи, жесткие. В них нет соглашения: они либо приемлемы, либо – нет. В основе такого выбора лежит научное мировоззрение, которое всегда строго и определенно.

Таковы, в первом приближении, возможности использования ряда Фибоначчи в разработке периодизации и общей хронологии развития человечества с древнейших времени до начала современной эпохи.

3.3. Последовательность Фибоначчи и теханализ рынков

Если практически все в нашем мире базируется на коэффициентах Фибоначчи, почему бы не использовать их в техническом анализе движения цен на биржах.

Впервые это предложил Ральф Нельсон Эллиотт.

Ральф Hельсон Эллиотт был инженером. После серьезной болезни в начале 1930-х гг. он занялся анализом биржевых цен, особенно индекса Доу-Джонса. После ряда весьма успешных предсказаний Эллиотт опубликовал в 1939 году серию статей в журнале Financial World Magazine. В них впервые была представлена его точка зрения, что движения индекса Доу-Джонса подчиняются определенным ритмам. Согласно Эллиотту, все эти движения следуют тому же закону, что и приливы – за приливом следует отлив, за действием (акцией) следует противодействие (реакция). Эта схема не зависит от времени, поскольку структура рынка, взятого как единое целое, остается неизменной.

Эллиотт писал: "Закон природы включает в рассмотрение важнейший элемент-ритмичность. Закон природы – это не некая система, не метод игры на рынке, а явление, характерное, видимо, для хода любой человеческой деятельности. Его применение в прогнозировании революционно".

Этот шанс предсказать движения цен побуждает легионы аналитиков трудиться денно и нощно. Мы сосредоточимся на способности делать предсказания и попытаемся выяснить, возможно, это или нет. Вводя свой подход, Эллиотт был очень конкретен. Он писал: "Любой человеческой деятельности присущи три отличительных особенности: форма, время и отношение, и все они подчиняются суммационной последовательности Фибоначчи".

При анализе поведения финансовых рынков пропорции чисел Фибоначчи дают ориентиры не только возможных уровней отката цен, но и указывают возможную величину хода в случае продолжения тенденции на рынке. Если после хода рынок откатывается, а затем продолжает ход в том же направлении, то в типичном случае величина продолженного хода может составить 1.618.

Очень кратко суть волновой теории Элиотта, касающейся поведения цен на рынках, заключается в следующем.

Полный цикл "бычьего" рынка состоит из 8 волн: 5 волн роста, за которыми следуют 3 волны падения.

Тенденция подразделяется на 5 волн в направлении следующей в иерархии, более продолжительной тенденции.

Коррекция всегда состоит из трех волн.

Простые коррекции бывают двух типов: зигзаги 5-3-5 и плоские волны 3-3-5.

Треугольники, как правило, образуются на четвертых волнах (эта модель всегда предшествует последней волне). Треугольник может также быть корректирующей волной В.

Любая волна является частью более длинной и подразделяется на более короткие.

Иногда одна из импульсных волн растягивается. Остальные две должны оставаться равными по времени и протяженности.

Математической основой теории волн Эллиотта является последовательность Фибоначчи. Количество волн, образующих тенденцию, совпадает с числами Фибоначчи.

Коэффициенты Фибоначчи и основанные на них отношения длины коррекции используются для определения ценовых ориентиров. Отношение длины коррекции к предыдущему движению рынка часто равняется 62%, 50% и 38% (Рис 23).

Правило чередования предупреждает, что не следует ждать одинакового проявления ценовой динамики два раза подряд.

"Бычьи" рынки не должны опускаться ниже основания предыдущей четвертой волны.

Волна 4 не должна перехлестываться с волной 1

Основными аспектами теории волн Элиотта являются (в порядке значимости): форма волны, соотношение волн и время.