Смекни!
smekni.com

Теория чисел Фибоначчи (стр. 9 из 14)

В самом общем виде система приложения чисел Фибоначчи к валютному рынку FOREX (foreign exchange) работает следующим образом.

Рис. 11. График цен на рынке FOREX

На рисунке 11 по оси X отложены цены швейцарского франка в долларах, по оси Y – время с шагом в 60 минут.

Методика прогностических расчетов строится на том, что численное соотношение значений "движение – откат" должно давать коэффициенты "золотого сечения", то есть:

- 1,618; 2,618; 4,236 (при движении);

- 0,618;' 0,382; 0,236 (при откате);

Эти численные значения и представляют собой те важные уровни, которые рынок "вспоминает" по ходу изменения цен. Именно на них ориентируется трейдер в своей игре.

Наиболее простое употребление числа Фибоначчи находят при расчете уровня отката (retracement) или отскока (rebound). Так как цены не могут непрерывно расти или падать продолжительное время, после каждого их изменения существует той или иной величины откат в противоположную сторону. Особенно ярко это явление видно после сильного и продолжительного движения. При этом откат 33% наиболее вероятен, а откат 66% наименее вероятен.

Рис. 12. Уровни отката и отскока

Использование последовательности Фибоначчи позволяет увеличить наиболее вероятную нижнюю границу с 33% до 38,2% (число Фибоначчи 0,382) и в то же время уменьшить наименее вероятную дальнюю границу с 66% до 61,8% (число Фибоначчи 0,618). Достижение уровня в 38,2% происходит чрезвычайно часто, что обусловлено огромной популярностью теории Эллиотта. Действительно, поскольку большинство участников рынка ожидает именно такой откат, именно он и происходит. Расчет уровней откатов и отскоков – достаточно простое занятие, что делает этот анализ привлекательным. Кроме того, откаты и отскоки действуют как на главных трендах, так и на вторичных и краткосрочных. Таким образом, их можно наблюдать на недельных и часовых графиках.

3.4. Фундаментальные физические константы

Недавно физиками найдено простое и красивое соотношение, связывающее важнейшие безразмерные константы: постоянную тонкой структуры (α), число пи (π) и золотое отношение (Φ), вытекающее из чисел Фибоначчи. Формула имеет вид:

На основе этой формулы получено новое расчетное значение постоянной тонкой структуры (α):

Альфа = α = 1/137,036009823754683675307501201348…

Напомним, что постоянная тонкой структуры α по определению равняется e2/hc, где e – заряд электрона, h – постоянная Планка, с – скорость света; приблизительно α равно 1/137.

Полученные результаты указывают на геометрический статус постоянной тонкой структуры, а также на то, что все безразмерные параметры, которые характеризуют микромир и Вселенную, являются принципиально вычисляемыми.

Исследования фундаментальных физических констант показали, что известные на сегодня фундаментальные физические константы очень жестко связаны между собой т. е. являются взаимозависимыми [22]. Это порождает надежду на то, что наконец-то появится хоть какая-то возможность подступиться к решению запутанной головоломки о таинственном числе "альфа", что не дает покоя физикам. Появились основания считать, что важнейшая физическая константа – постоянная тонкой структуры (α), также может быть связана с другими константами. Если такая связь действительно существует, то с учетом безразмерности постоянной тонкой структуры (α), наиболее простым соотношением эта константа должна быть связана не с размерными, а с безразмерными константами. Это тем более представляет интерес, поскольку значения некоторых безразмерных констант определены с очень высокой точностью.

В физике мы имеем дело с двумя классами констант – с физическими константами и с геометрическими константами. Н. В. Косинов считает, и к этому его подтолкнули результаты исследования фундаментальных физических констант, что постоянная тонкой структуры (α) νе есть физическая константа, а является геометрической константой. Поэтому представляет интерес выяснить какая существует связь у этой константы с другими геометрическими константами. По его мнению, известная связь постоянной тонкой структуры (α) с некоторыми физическими константами (постоянной Планка, зарядом, скоростью света) есть вторичное проявление более глубокой взаимосвязи физики и геометрии. Истоки такой связи и роль в этом математических констант современной наукой еще не раскрыты. Все безразмерные константы очень жестко связаны между собой внутри собственного семейства безразмерных констант, а их связь с размерными фундаментальными физическими константами является лишь следствием, т. е. вторичным проявлением общей взаимосвязи фундаментальных констант. Здесь уместно сослаться на мнение А. Пуанкаре о дополнительности физики и геометрии. Согласно Пуанкаре, на опыте мы всегда наблюдаем некую "сумму" физики и геометрии [3]. Если это так, то подобная "сумма" физики и геометрии должна проявляться на примере единого константного базиса в виде совокупности физических и геометрических констант. В качестве единого константного базиса для описания законов природы достаточно всего лишь трех физических и двух геометрических констант. Н. В. Косинов считает, что среди семейства фундаментальных физических констант существует только пять первичных суперконстант, от которых происходят все другие константы [22]. В пятиконстантном онтологическом базисе – три суперконстанты размерные, а две – безразмерные. Три размерные онтологические суперконстанты являются физическими, а две безразмерные онтологические суперконстанты – геометрическими. Пяти первичных суперконстант оказалось вполне достаточно, чтобы на их основе получить расчетом множество других фундаментальных констант [22]. Теперь становится понятным, что сотни констант в современной физике необоснованно наделены фундаментальным статусом, поскольку они не являются первичными константами. Здесь уместно вспомнить правило Оккама, в соответствии с которым не следует без необходимости увеличивать число сущностей, а также мнение Френеля о том, что "природа склонна к управлению многим с помощью малого" [1].

На роль одной из геометрических суперконстант претендует постоянная тонкой структуры (α). Так что, видимо, константы α и π имеют первичный онтологический статус. Из этих соображений очень важным является выяснение роли и места постоянной тонкой структуры (α) в семействе безразмерных констант.

Ниже показана интересная взаимосвязь, выявленная между тремя важнейшими безразмерными константами: постоянной тонкой структуры (α), числом пи (π) и золотым сечением (Φ). Это простая и красивая формулу. Найденное соотношение имеет вид:

где: Φ = Phi = 1,6180339…

С использованием числа φ = phi = 0,6180339… формула примет вид:

То, что α и π оказались связанными с золотым отношением Φ, вытекающим из чисел Фибоначчи, указывает на причастность постоянной тонкой структуры (α), и числа пи (π) к закону гармонии в природе. Если природа не прошла мимо этой взаимосвязи, то двух безразмерных констант должно быть вполне достаточно для геометрического константного базиса Вселенной. Для ученых также должно быть вполне достаточно двух безразмерных констант, чтобы на их основе, с помощью расчета, получать другие безразмерные константы.

Воспользуемся этими формулами для вычисления точного значения постоянной тонкой структуры.

Значение числа пи (π) сегодня известно с очень большой точностью и уже вычислено до 206 158 430 000 знаков (!) [21]:

Πθ = π = 3,1415926535897932384626433832795… (точно).

Значение золотого сечения (Φ) также известно с очень большой точностью и уже вычислено до 1 500 000 000 знаков:

Phi =Φ = 1,61803398874989484820458683436564… (ςочно),

phi = φ = 0,61803398874989484820458683436564… (ςочно).

Столь точные значения чисел π, Φ θ φ οозволяют, на основе приведенных выше формул, вычислить значение постоянной тонкой структуры (α). Ниже приведено значение числа "альфа", полученное расчетом, где, для примера, показаны 33 знака этой константы:

Альфа = α = 0,00729735199737736169573530153098411…

Обратное значение постоянной тонкой структуры (α – 1) соответственно равно:

(Альфа) – 1 = α – 1 = 137,036009823754683675307501201348…

Если учесть вышеизложенное, то вся запутанная головоломка о таинственном числе "альфа" проистекала из того, что не была учтена геометрическая сущность этой константы. В результате, не до конца выясненная связь физики и геометрии породила сложнейшую проблему постоянной тонкой структуры, которую безуспешно пытались решить выдающиеся ученые прошлого столетия. И сейчас эта проблема входит в 10 важнейших проблем физики, которые получили название "проблемы тысячелетия" [21, с. D3].

Новый геометрический статус постоянной тонкой структуры (α) позволит в корне изменить представления об этой константе и снимет с нее завесу таинственности. Если принять геометрическую сущность постоянной тонкой структуры, то это будет означать, что все безразмерные параметры, которые характеризуют микромир и Вселенную, являются принципиально вычисляемыми. Кроме того, окончательно прояснится в чем состоит и как проявляется связь физики и геометрии в различных явлениях материального мира и как эта связь представлена в константных базисах физических теорий. Ведь до сих пор остаются без ответа вопросы: какой геометрией воспользовалась природа и что является онтологическим базисом материи?

Помимо этого, кроме приведенных выше формул существуют математические соотношения для точного и независимого вычисления значения постоянной тонкой структуры (α), как это имеет место отдельно для числа пи (π) и отдельно для золотой пропорции (Φ). Их, эти независимые математические соотношения, необходимо искать.