Таким образом, кратко охарактеризовав физическую и функциональную нагрузки, можно отметить, что "спортивная нагрузка" включает в себя определенную интегративную величину выполненной работы — "физическую нагрузку" — и сопутствующие ей интегративные сдвиги в организме — "функциональную нагрузку".
Нельзя отрицать и того, что процесс физической подготовки, по существу своему, есть единство двух существенно различных хотя и взаимосвязанных процессов, а именно: тренировочного — как процесса накопления необходимых двигательных навыков и умений, а также сдвигов в организме, и соревновательного — как процесса трансформации накопленных двигательных умений и навыков, а также положительных сдвигов в организме спортсмена с целью реализации их в максимально возможный спортивный результат, осуществляемый, как правило, лишь в процессе спортивных соревнований. Поэтому физическая нагрузка в свою очередь может быть подразделена на две разновидности: тренировочную и соревновательную. Что касается функциональной нагрузки, то, в силу своей специфики, она непосредственно не может быть подразделена на две выше названные разновидности, но всецело обуславливается либо спецификой (характером, величиной и прочее) тренировочной физической нагрузки, либо спецификой (характером, величиной и прочее) соревновательной физической нагрузки.
Следовательно, если физическая и функциональная нагрузки являются двумя качественно различными видами спортивной нагрузки, то тренировочная и соревновательная нагрузки выступают лишь как разновидности этих видов спортивной нагрузки.
Необходимо остановиться еще на двух моментах. Во-первых, следует различать выполненную физическую нагрузку и ту, которую мы планируем, т. е. такую нагрузку, которая при определенных условиях превращается в действительность, но еще не превратилась в нее; возможность еще не реализована, но мы уже рассматриваем ее так, как если бы имели дело с чем-то уже существующим. Это относится как к физической, так и к функциональной нагрузкам.
Когда мы говорим о нагрузке, то чаще всего подразумеваем, что нагрузка уже выполнена, т. е. нагрузка реальная, уже имевшая место. Но в то же время нам приходится нередко говорить о планируемой физической нагрузке. В отличие от реальных процессов, которые имеют место в первом случае, во втором случае имеет место предполагаемая, т. е. возможная нагрузка. Поэтому она (нагрузка) выступает как идеальная модель будущей реальной нагрузки.
Глава 2. Адаптивные физиологические ритмы
Биоритмологический подход к феномену времени как к биологическому параметру и изучение закономерностей временной организации живых систем открывают новые возможности для регуляции и управления процессами, протекающими в организме.
Биологические ритмы — колебания смены и интенсивности процессов и физиологических реакций. В их основе лежат изменения метаболизма биологических систем, обусловленные влиянием внешних и внутренних Факторов. Факторы, которые влияют на ритмичность процессов, происходящих в живом организме, получили определение "синхронизаторы", или "датчики времени".
Физиологические ритмы — циклические колебания в различных системах организма. Они составляют основу жизни. Одни ритмы поддерживаются в течение всей жизни, и даже кратковременное их прерывание приводит к смерти. Другие появляются в определенные периоды жизни индивидуума, причем часть из них находится под контролем сознания, а часть протекает независимо от него. Ритмические процессы взаимодействуют друг с другом и с внешней средой.
Изменение ритмов, выходящих за пределы нормы, либо появление их там, где они раньше не обнаруживались, связано с болезнью.
Физиологические ритмы являются одной из основных форм проявления жизнедеятельности, наблюдаются у всех живых организмов и на всех уровнях организации живой материи — от субклеточных структур до целостного организма. Они, как правило, не являются строго периодическими колебаниями: в определенных пределах меняется их период, амплитуда, форма, уровень.
Наиболее близки к периодическим колебаниям физиологические ритмы, которые возникают при усвоении организмом ритмичных внешних сигналов (напр., световых мельканий), различные адаптивные ритмы.
Физиологические ритмы характеризуются широким спектром частот; их период варьирует от десятитысячных долей секунды до нескольких лет. Часто один и тот же показатель одновременно участвует в нескольких видах колебательных изменений (напр., пульсовые, дыхательные и суточные изменения артериального давления, волны различной частоты на ЭЭГ). Характерные для одной системы ритмы могут передаваться другой (напр., изменения частоты сердечных сокращений в ритме дыхания). Физиологические ритмы могут быть замаскированы апериодическими колебаниями исследуемого показателя (шумами) и другими ритмическими колебаниями, форма их часто бывает сложной. Поэтому разработаны специальные методы анализа, позволяющие выявлять и изучать скрытую периодичность физиологических процессов (гармонический анализ, автокорреляционный анализ, скользящее суммирование и др.).
Большинство физиологических ритмов связано с чередованием различных функциональных состояний соответствующих систем (напр., сокращение и расслабление мускулатуры, сон и бодрствование). Поэтому в различные фазы колебательного процесса отмечается разная реакция на внешние воздействия: разное направление смещения фазы суточного цикла при действии датчика времени в различные его моменты, отсутствие реакции на раздражение в рефракторный период и т.п.
Адаптивные физиологические ритмы выработались в процессе эволюции как форма приспособления организмов к циклически меняющимся условиям среды. Наиболее изучены околосуточные (циркадные) ритмы, циркадные ритмы отражают периодичность геофизических факторов, обусловленную вращением Земли вокруг своей оси. В течение суток закономерно изменяется, прежде всего, естественное освещение. Суточным колебаниям подвержены цикл день-ночь, температура и влажность воздуха, напряженность электрического и магнитного поля Земли, потоки разнообразных космических факторов, падающих на Землю в конкретный временной цикл. Под влиянием этих внешних факторов совершалась эволюция всех форм жизни на Земле, колебания их в настоящее время, как и миллионы лет назад, играют жизненно важную роль для всех без исключения обитателей Земли. Напр., для дневных животных восход Солнца — сигнал для активной деятельности: добывания пищи, строительства жилья, выращивания потомства, а с наступлением темноты активизируются животные, ведущие ночной образ жизни. И все животные "подстраиваются" к этому суточному ритму. А кто не сможет "вписаться" в этот режим, заданный природой, погибают. Для выживания любой организм должен соизмерить свой ритм с внешними ритмами. Адаптация конкретного организма или видовая адаптация к внешним условиям в широком биологическом смысле — это синхронизация жизненных процессов (ритмов) организма или целой популяции с внешними ритмами, таким образом, циркадная периодичность жизненных функций является врожденным свойством.
Для организма человека характерно повышение в дневные и снижение в ночные часы физиологических функций, обеспечивающих его физическую активность (частоты сердечных сокращений, минутного объема крови, артериального давления, температуры тела, потребления кислорода, содержания сахара в крови, физической и умственной работоспособности и др.). В обычных условиях наблюдаются определенные соотношения между фазами отдельных околосуточных ритмов. Поддержание постоянства этих соотношений обеспечивает согласование функций организма во времени, обозначаемое как внутреннее согласование. Помимо этого, под действием меняющихся с суточной периодичностью факторов среды (синхронизаторов, или датчиков времени) происходит внешнее согласование циркадных ритмов. Различают первичные (имеющие основное значение) и вторичные (менее значимые) синхронизаторы. У животных и растений первичным синхронизатором служит, как правило, солнечный свет, у человека им становится также социальные факторы.
Динамика околосуточных физиологических ритмов у человека и высших животных обусловлена не только врожденными механизмами, но и выработанным в течение жизни суточным стереотипом деятельности. Имеющиеся данные о возможности рассогласования по частоте отдельных циркадных ритмов дают возможность предположить существование целого ряда относительно независимых осцилляторов, каждый из которых регулирует ритм определенной, широко разветвленной функциональной системы. В многоклеточных организмах центральные регуляторы не возбуждают колебаний в периферических тканях, а только синхронизируют присущие каждой клетке организма циркадные ритмы по частоте и фазе. Регуляция физиологических ритмов у высших животных и человека осуществляется в основном гипоталамо-гипофизарной системой.