Смекни!
smekni.com

Оборудование для первичной переработки винодельческого сырья (стр. 3 из 7)

На рис. 1.6 показан общий вид и кинематическая схема дробилки ЦДГ-50.

Виноград подается в бункер 5 дробилки, откуда поступает в малый сплошной цилиндр 8. где при помощи вращающихся дробильных бичей 7 происходит дробление винограда и гребнеотделение. В нижней части корпуса виноград отбрасывается центробежной силой на винтообразные гребневыносные лопасти 9. Раздробленные ягоды проваливаются через отверстия перфорированного цилиндра 4 и поступают в мезгосборник, а гребни подхватываются лопастями, поднимаются по внутренней по­верхности перфорированного цилиндра и выбрасываются через окно, расположенное в боковой поверхности корпуса.

Диаметры малых (сплошных) цилиндров в таких дробилках 410-550 мм (в зависимости от производительности), частоты вращения вала с бичами 125-275 об/мин, вала с гребневыносными лопастями 400 и 300 мм.

В некоторых машинах этой серии (ЦДГ-20) дробильные бичи и 1ребневыносные лопасти крепятся на одном валу (устаревший вариант).

За рубежом (США. Италия) выпускаются ударно-центробежные дробилки горизонтального типа.

Корректной методики расчета производительности центробежных дробилок-гребнеотделителей практически нет из-за отсутствия обоб­щающих теоретических и экспериментальных исследований. То же сле­дует сказать и о расходе энергии. В практике для расчета производи­тельности пользуются лишь формулой для определения пропускной способности выносных лопастей для гребней.

Ударно-центробежные дробилки-гребнеотделители, в сравнении с валковыми, обеспечивают впоследствии более высокий выход сусла-самотека на стекателях, так как степень измельчения винограда в них значительно выше, однако более интенсивное механическое воздейст­вие на виноград сопровождается образованием мельчайших частиц ко­жицы и гребней, которые переходят в сусло, образуя трудноосаждаемые взвеси. Это снижает качество виноматериалов и является недостатком ударно-центробежных машин.

К недостаткам этих машин следует отнести также повышенное со­держание дубильных веществ в сусле, что особенно нежелательно при вы­работке высококачественных виноматериалов, и большое окисление сусла

(по-видимому, из-за вентиляционного эффекта). Эти машины следует при­менять для переработки винограда красных сортов с недостаточным со­держанием красящих и дубильных веществ, а также при переработке вино­града для приготовления ординарных вин. Для получения высококачест­венных виноматериалов валковые машины предпочтительнее.

Рис. 1.6. Ударно-центробежная

а - разрез общего вида (I - крестовина; 2 - корпус; 3 - труба; 4.8- цилиндры; 5- бункер; б - вал; 7- бич; 9 -лопасть}

По общим же конструктивным показателям (металло- и энергоем­кости, занимаемой площади и т. д.) ударно-центробежные машины бо­лее совершенны.

Помимо описанных выше имеются другие конструктивные разно­видности дробильно-гребнеотделительиых машин, в том числе дезинте­граторы. Последние по конструкции рабочих органов имеют сходство с молотковыми и роторными дробилками, предназначенными для мелкого дробления материалов. Чаще всего дезинтефекаторы используют для из­мельчения гребней и выжимок.

Стекатели, настойники, экстракторы

Отделение сусла первой фракции (самотека) имеет целью помимо получения продукта высшего качества облегчить прессование мезги. Сусло-самотек используется для приготовления лучших марочных вин. Норма отбора сусла первой фракции, получаемого на стекателях из винограда, 50-55 дал при общем количестве сусла 75-80 дал.

В последнее время при производстве отдельных типов вин с целью обогащения сусла экстрактивными и ароматическими веществами при­меняют специальные аппараты - так называемые настойники. Для по­лучения красных вин по определенной схеме применяют экстракторы, обеспечивающие более полный переход в виноматериал красящих и дубильных веществ.

Стекатели и настойники.Стекание сусла из мезги можно рас­сматривать как гидродинамический процесс течения жидкости через пористую среду, который сопровождается более или менее полным раз­делением твердой и жидкой фаз суспензии. Общие закономерности это­го процесса исследованы В. П. Нечаевым

Производительность стекателей периодического действия пра­вильнее всего определять с учетом кинетики процесса, но это чаще все­го невозможно из-за отсутствия экспериментальных данных или их тео­ретического обобщения. Полому для расчетов может быть рекомендо­вана формула для определения производительности П (в дал/с) стекате­лей по суслу:

где (/> - коэффициент, учитывающий степень заполнения корзины, камеры, ем кости (0,8-0,9): V- объем корзины, камеры, емкости. м; р - объемная масса мезги, кг/м'; q - количество сусла, получаемом из /000 кг винограда, дал: г,. -время рабочего периода цикла, с.

Формула (1.7) определяет итоговую, суммарную производитель­ность стекателя, так как в нее входит время рабочего периода цикла тр. При подсчете производительности в час, смену и т. д. необходимо учесть нерабочее время цикла и коэффициент использования оборудования К.

Для расчета рабочего объема и производительности камерных сте­кателей следует принимать длительность одного цикла работы 4 ч. Это обосновывается рациональной продолжительностью процесса настаива­ния мезги при изготовлении белых столовых вин в течение 2-4 ч. Значе­ние г обычно принимается равным 10 ч. Тогда л следует принять рав­ным 3. В связи с тем, что камерные стекатели являются аппаратами пе­риодического действия, их число N должно быть не менее двух для обеспечения непрерывности работы линии. При этом каждый стекатель должен находиться под разгрузкой стекшей мезги поочередно в течение 2 ч. Количество отходов гребней М обычно составляет 4"% массы вино-1рада. Объемная масса свежей мезги может быть принята 1080 кг/м3.

В отечественном виноделии благодаря большой производительно­сти, непрерывности действия, малым габаритным размерам и другим преимуществам - наибольшее распространение получили шнековые стекатели, принятые в качестве типовых. К ним относятся стекатели серии ВССШ (разных модификаций производительностью 10, 20, 30, 50 и 100 т/ч) и стекатель ВСН-20 (производительностью 20 т/ч).

Стекатели производительностью 10, 20 и 30 т/ч (рис. 1.9, я, б) уст­роены одинаково. Внутренние боковые стенки бункера 2, огражденные кожухами, наклонные, перфорированные; передняя и задняя стенки вер­тикальные. Внутри бункера имеется дренажная перегородка (на рисунке не показана), увеличивающая площадь дренирующей поверхности и спо­собствующая лучшему распределению массы мезги в бункере. В нижней части бункера находится патрубок для отбора сусла. В месте выхода мез­ги корпус 4 имеет форму конуса, что способствует легкому отжиму мезги.

Рис. 1.9. Принципиальные (а) и кинематические (б, в) схемы шнековых

стекателей: а - ВССШ-10. ВССШ-20Д, ВССШ-ЗОД (1 - рама; 2 - бункер; 3 - шнек; 4 -

корпус; б - те .же (1.2- шкивы; 3 - электродвигатель; 4 -редуктор; 5 - вал шнека); в - ВССШ-50, ВСШ-100 (обозначения те же)

Мезга из лробилки подается в первую по ходу движения секцию бункера и через пространство между поперечной перегородкой и шне­ком 3 перемещается во вторую секцию, а оттуда - в цилиндрический корпус стекателя. За счет уменьшения поперечного сечения в конусной части корпуса осуществляется некоторый отжим мезги (давление до 0,16 МПа). Степень отжатия обусловливается величиной сужения ко­нусной части барабана.

Стекатели производительностью 50 и 100 т/ч в принципе устрое­ны так же. Они отличаются лишь наличием двух шнеков. Кинемати­ческая схема стекателей показана на рис. 1.8, в (обозначения те же; цифры приводятся для стекателя ВССШ-50). Кроме того, в стекателе ВССШ-50 для дополнительного регулирования степени отжатия мез­ги на выходной части перфорированного корпуса установлена спе­циальная крышка. При совмещении ребер крышки с ребрами лотка степень отжатия минимальная; при повороте крышки сопротивление, а следовательно, и степень сжатия увеличиваются. Подобным пово­ротом ребер крышки можно регулировать степень отжатия мезги в пределах до 10'.?.

Диаметры шнеков в стекателях ВССШ производительностью 10, 20 и 30 т/ч - 634 мм, а производительностью 50 и 100 т/ч - 697 и 797 мм, частоты вращения соответственно 1,3; 2,1; 4.0; 3,0 и 1,5/2,5 об/мин.