Смекни!
smekni.com

по технологии товаров (стр. 3 из 6)

Крашение полиамидных волокон обычно осуществляют в массе(краситель вводят в расплавполимера перед формованием волокна), или в готовых изделиях дисперсными красителями и их водорастворимыми производными, кислотными красителями и органическими пигментами.

Виды выпускаемых полиамидных волокон мононити, комплексные нити с числом элементарных нитей 3-400, для текстильной переработки и техн. целей, текстурированые. нити, нити для ковров и мебельных тканей (текстурированые. комплексные нити, линейная плотность 80-400 текс), штапельное волокно, нетканые материалы.

Свойства. Физико - химические свойства полиамидных волокон зависят от химической природы и молекулярной массы исходного полиамида, структурных особенностей волокна. С повышением молекулярной массы полиамида улучшаются прочность, модуль деформации при растяжении, уста-лостные характеристики, физоко - механические показатели волокон.

Полиамидные волокна характеризуются высокой прочностью при растяжении, устойчивостью к знакопеременным деформациям, высоким сопротивлением к ударным нагрузкам и истиранию. Недостатки полиамидных волокон из алифатических. полиамидов - сравнительно низкая гигроскопичность, что является причиной их высокой электризуемости, относительно низкий модуль деформации при растяжении и низкие тепло -, термо - и светостойкость. Для повышения устойчивости полиамидных волокон к окислению при термических и фотохимических воздействиях в исходный полимер можно вводить различные антиоксиданты (ароматические амины и фенолы, бензимидазолы, органические и неорганические солипереходных металлов, комплексные соединения, содержащие Cu). Область рабочих температур для волокон из алифатических полиамидов составляет 80-1500C.

Полиамидные волокна растворяются в феноле, крезолах, ксилоле, трихлорэтане, хлороформе, бензиловом спирте, нитробензоле, ДМСО, ди-метилацетамиде, ДМФА (особенно в сочетании с LiCl), в некоторых фторпроизводных спиртов и карбоновых кислот. Не растворяются в алифатических спиртах, ацетоне, CCl4, три-хлорэтилене, углеводородах, простых и сложных эфирах. полиамидные волокна неустойчивы в концентрированных кислотах, особенно минеральных. Щелочи умеренных концентраций не оказывают заметного воздействия на полиамидные волокна, однако с повышением температуры и концентрации деструктирующее воздействие щелочей возрастает. Концентрация раствора NaOH, вызывающего существ, деструкцию волокна, составляет 10-12%. Прочность волокон мало снижается после пребывания в 10-20%-ных растворах Na2CO3 и в растворах аммиака любой концентрации при комнатной температуре [3].

По сравнению с волокнами из поли-e-капроамида и поли-гексаметиленадипинамида волокна из поли-w-ундеканамида (найлон-11) и полидодеканамида (найлон-12), вследствие наличия в их макромолекулах длинных углеводородных участков между амидными группами, менее гидрофильны, обладают меньшей адгезией к резине и более высокой хим. стойкостью. Эти волокна имеют приятный гриф (мягкие на ощупь). Волокно из поли-a-пирролидонамида (найлон-4) отличается повышенным сродством к красителям и более высокой гигроскопичностью. Полиамидные волокна из поли-b-пропиоамида (найлон-3) вследствие большого числа амидных связей характеризуются высокой гигроскопичностью, меньшим относит. удлинением, более высокими температурой плавления и теплостойкостью, устойчивостью к термоокислительной и фотодеструкции. Эти волокна близки по свойствам к натуральному шелку. Волокно из полигексаметиленсебацинамида (найлон-6,10) эластичнее, чем из полигексаметиленадипинамида, и приближается по этому показателю к шерсти. Напротив, волокно из политетраметиленадипинамида (най-лон-4,6) характеризуется большим (на 25%) модулем деформации растяжения, чем найлон-6,6, и высокой устойчивостью к истиранию. В ряду волокон от найлона-3 до найлона-12 снижаются модуль деформации растяжения и гидрофильность (приблизительно с 10 до 1%), повышаются химическая стойкость и эластичность.

При введении в макромолекулы алифатических полиамидов ароматических или алициклических фрагментов в случаях изоморфного замещения повышаются модуль деформации растяжения и термостойкость волокон.

Полиамидные волокна имеют высокую прочность и самую большую из текстильных волокон устойчивость к истиранию по сгибам, обладают малой сминаемостью и усадкой, устойчивостью к действию микроорганизмов.

Применение. Полиамидные волокна широко применяют для производства товаров народного потребления, в чулочно-носочных изделий, трикотажа, тканей для верх, одежды. В технике полиамидные волокна используют для изготовления шинного корда, РТИ, рыболовных сетей, тралов, канатов, веревок, фильтровальных материалов для пищевой промышленности, щетины (для моечных и хлопкоуборочных машин). Окрашенные в массе текстурированные нити (линейная плотность 60-330 текс) используют для изготовления ковровых изделий.

3. Общее устройство автоматического ткацкого станка (одного из видов: одночелночного, многочелночного или бесчелночного), основные механизмы, их назначение, общее устройство.

Ткачество — процесс образования ткани из нитей и пряжи. При ткачестве нити основы (продольные) и утка (поперечные) переплетаются между собой в определенном порядке. Процесс ткачества включает подготовительные операции и собственно ткачество, выполняемое на ткацком станке [3,с.102].

Бесчелночные ткацкие станки с малогабаритными прокладчиками утка типа СТБ предназначены для выработки хлопчатобумажных, шерстяных, шелковых и льняных тканей. В зависимости от конструкции отдельных механизмов и по другим признакам они подразделяются на следующие группы:

- узкие —с рабочей шириной 175 (180) см и 216 (220) см и широкие —с рабочей шириной 250, 330 и 360 см;

- с одноцветным и многоцветным уточным прибором; число цветов или видов уточных нитей, которое одновременно можно перерабатывать на станках СТБ, равно 4—6;

- эксцентриковые, кареточные и жаккардовые. На эксцентриковых станках этого вида можно вырабатывать ткани главных и многих видов мелкоузорчатых переплетений, имеющих раппорт по утку не более 8 нитей, с числом ремизок до 10. Установка кареточных зевообразовательных механизмов позволяет вырабатывать ткани с раппортом по утку до 300 и количеством ремизок до 18;

-одно-, двух- и трехполотенные. На станках с шириной заправки по берду 175 (180) см вырабатывают ткани в одно полотно. На станках, имеющих рабочую ширину 216 (220) см и 250 см, возможна выработка одного и двух полотен ткани. Выпущена партия станков СТБ-220, предназначенных для выработки трех полотен для вафельных полотенец. Станки СТБ с шириной заправки по берду 330 см во всех отраслях текстильной промышленности используют как двух-и трехполотенные. На всех станках СТБ, >, кроме станка СТБ-175 (180) работают с двух навоев, а на данном станке — с одного. Один навой применяют иногда и на станках шириной 216 (220) и 250 см;

- с углом начала боя 140 и 105°(положение главного вала в момент вылета прокладчика из уточной боевой коробки). Станки с шириной заправки по берду 175 (180) к 216 (220) см имеют угол боя, равный 140°, станки с шириной 250 и 330 см— 105°. На станках с одним углом начала боя все одноименные механизмы работают по общим цикловым диаграммам. Станки СТБ, серийно выпускаемые в настоящее время, предназначены в основном для выработки тканей средних по напряженности заправки [3,с.104].

Процесс образования ткани на ткацких станках СТБ происходит аналогично образованию ее на челночных ткацких станках, изменен лишь способ введения уточной нити в зев.

Рис. 1. Принципиальная схема образования ткани на ткацком станке: 1 — навой; 2 — нити основы; 3 — скало; 4 — ламели; 5 — вершник; 6 — бёрдо; 7 — челнок; 8 — грудница; 9 — направляющий валик; 10 — вальян; 11 — товарный валик; 12 — подбатанный вал; 13 — лопасть батана; 14 — ремизка; 15 — глазок галева; 16 — батан.

Основные рабочие органы станка — ремизка, челнок (прокладчик утка) и бёрдо. Нити основы, сматываемые с навоя, огибают направляющий валик (скало) и принимают горизонтальное или наклонное положение. Далее они проходят через отверстия ламелей и через глазки галев ремизок, перемещающих нити основы в вертикальном направлении для образования зева. В зев челноком или прокладчиком утка др. типа вводится уточная нить, которая продвигается (прибивается) к опушке ткани бёрдом, совершающим возвратно-поступательное движение вместе с батаном. У опушки ткани нити основы, переплетаясь с нитью утка, образуют ткань, которая огибает грудницу, вальян, направляющий валик и навивается на товарный валик. Порядок чередования перемещений ремизок обеспечивает изготовление тканей различного переплетения нитей. Число зубьев, приходящихся на единицу длины бёрда, и число нитей, проходящих через просветы между зубьями, обусловливают плотность ткани по основе, а перемещение (отвод) ткани, приходящееся на одну уточную нить, определяет плотность ткани по утку.