· Дедуктивные. Такие правила требуют принятия следствий, вытекающих из некоторых посылок, если приняты сами посылки.
· Эмпирические. Такие правила значения, предполагают выход за пределы языка и внеязыковое наблюдения.
Языки, включающие эмпирические правила значения, принято называть эмпирическими. Все языки могут быть разделены на естественные , искусственные и частично искусственные.
2. Основные функции языка.
Основные функции, или употребления, языка – это те основные задачи, которые решаются языком в процессе коммуникации и познания. В числе этих задач особое место занимает описание – сообщение о реальном положении вещей. Если это сообщение соответствует действительности, оно является истинным. Сообщение, не отвечающее реальному положению дел, ложно.
Еще одна функция языка – попытка заставить что-то сделать. Выражения, в которых реализуется намерение говорящего добиться того, чтобы слушающий совершил нечто, разнообразны.
Язык может служить также для выражения разнообразных чувств. Также он может использоваться для изменения мира словом.
«Обручаю вас» (объявляю вас мужем и женой), такие выражения называются декларациями. Декларации не описывают некоторое существенное положение дел. В отличие от норм они не направлены на то, чтобы кто-либо в будущем создал предписываемое положение вещей. Декларации непосредственно меняют мир, и делают это самим фактом своего произнесения.
Язык может использоваться также для общений, то есть для того, чтобы возложить на говорящего обязательство совершить некоторое будущее действие или придерживаться определенной линии поведения.
Язык может использоваться для оценок, то есть для выражения положительного, отрицательного или нейтрального отношения к рассматриваемому объекту или, если сопоставляются два объекта, для выражения предпочтения одного из них другому или утверждения равноценности их друг другу.
С точки зрения логики, важным является проведение различия между двумя основными функциями языка: описательной и оценочной. Все другие употребления языка, если отвлечься от психологических и иных, несущественных с логикой точки зрения обосновав, сводятся либо к описаниям, либо к оценкам.
3. Логическая грамматика.
Из грамматики хорошо известно деление предложений на части речи – существительное, прилагательное, глагол и т. д. Деление языковых выражений на семантические категории, широко используемый в логике, напоминает это грамматическое подразделение и в принципе произошло из него. На этом основании теорию семантических категорий иногда называют «логической грамматикой». Ее задача – предотвращать смешение языковых выражений разных типов, которые ведет к образованию бессмысленных выражений.
Два выражения считаются относящимися к одной и той же семантической категории рассматриваемого языка, если замена одного из них другим в произвольном осмысленном предложении не превращают это предложение в бессмысленное.
Именами являются языковые выражения, подстановка которых в форму «S есть P» вместо переменных S и P дает осмысленное предложение.
Предложение (высказывание) – это языковое выражение являющееся истинным или ложным.
Функтор – это языковое выражение, не являющееся ни именем, ни высказыванием и служащее для образования новых имен или высказываний из уже имеющихся.
Имена.
1. Виды имен.
Имена – необходимое средство познания и общения. Обозначая предметы и их совокупности, имена связывают язык с реальным миром. Имена естественны и причинны, как те вещи, с которыми они связаны.
Имя – это выражение языка, обозначающее отдельный предмет, совокупность сходных предметов, свойства, отношения и т. д.
Выражение языка является именем, если оно может использоваться в качестве подлежащего «S есть P» (S – подлежащее, P – сказуемое).
2. Отношение между именами.
Содержание имени – это совокупность тех свойств, которые присуще всем предметам, обозначаемым данным именем, и только им.
Объем имени – это совокупность, или класс, тех предметов, которые обладают признаками, входящими в содержание имени.
3. Определение
Определение – логическая операция, раскрывающая содержание имени. Определить имя – значит, указать, какие признаки входят в его содержание.
Прежде всего, нужно отметить различия между явными и неявными определениями. Первые имеют форму равенства – совпадения двух имен (понятий). Неявные определения не имеют формы равенства двух имен. Особый интерес среди неявных определений имеют контекстуальные и остенсивные определения.
Контекстуальные определения всегда остаются в значительной мере неполными и неустойчивыми. Почти все определения, с которыми мы встречаемся в обычной жизни, - это контекстуальные определения.
Остенсивные определения – это определения путем показа. Остенсивные определения, как и контекстуальные, отличаются некоторой независимостью, неокончательностью. Остенсивные определения – и только они – связывают слова с вещами. Без них язык – только словесное кружево, лишенное объективного, предметного содержания.
К явным определениям и, в частности, к родо-видовым предъявляются ряд достаточно простых и очевидных требований. Их называют обычно правила определения:
· Определяемое и определяющее понятия должны быть взаимозаменяемы. Если в каком-то предложении встречается одно из этих понятий, всегда должна существовать возможность заменить его другим. При этом предложение, истинное до замены, должно оставаться истинным и после его. Для определения через род и видовое отличие это правило формулируется, как правило, соразмеримости определяемого и определяющего понятия: совокупности предметов, охватываемые ими, должны быть одним и тем же.
· Нельзя определять имя через само себя или определять его через такое другое имя, которое, в свою очередь, определяется через него. Это правило запрещает порочный круг.
· Определение должно быть ясным.
4. Деление.
Деление – это операция распределения на группы тех предметов, которые мыслят в исходном имени. Получаемое в результате деление группы называются членами деления. Признак, по которому производится деление, именуется основанием деления. В каждом делении имеется, таким образом, делимое понятие, основание деления и члены деления.
Требования, предъявляемые к делению, достаточно просты:
· Деление должно вестись только по одному основанию. Это требование означает, что избранный вначале в качестве основания отдельный признак или совокупность признаков не следует в ходе деления другими признаками.
· Деление должно быть соразмеримым, или исчерпывающим, то есть сумма объемов членов деления должна равняться объему делимого понятия. Это требование предостерегает против пропуска отдельных членов деления.
· Члены деления должны взаимно исключать друг друга. Согласно этому правилу, каждый отдельный предмет должен находиться в объеме только одного видимого понятия и не входить в объем других видов понятий.
· Деление должно быть непрерывным. Это правило требует не делать скачков в делении, переходить от исходного понятия к однопорядочным видам, но не к подвидам одного из таких видов.
Частым случаем деления является дихотомия (буквально: разделение на двое). Дихотомическое деление опирается на крайний случай варьирования признака, являющегося основанием деления: с одной стороны, выделяются предметы, имеющие этот признак, с другой – не имеющие его.
Классификация – это многоступенчатое, разветвленное деление. Результатом классификации является система соподчиненных имен: делимое имя является родом, новые имена – видами, видами видов (подвидами).
Высказывания.
1. Простые и сложные высказывания. Отрицание, конъюнкция, дизъюнкция.
Высказывания – грамматически правильное предложение, взятое вместе с выражаемым им смыслом (содержанием) и являющееся истинным или ложным. Высказывание – более сложное образование, чем имя. При разложении высказываний на части, мы всегда получаем те или иные имена.
Высказывание считается истинным, если даваемое им описание соответствует реальной ситуации, и ложным, если не соответствует ей. «Истина» и «ложь» называется истинностными значениями высказывания.
Высказывания называются простым, если оно не включает других высказываний в качестве своих частей. Высказывание является сложным, если оно получено с помощью логических связок из нескольких более простых высказываний.
Та часть логики, в которой описываются логические связи высказываний, не зависящее от структуры простых высказываний, называется общей теорией дедукции.
Отрицание – логическая связка, с помощью которой из данного высказывания получается новое, причем, если исходное высказывание истинно, его отрицание будет ложным, и наоборот. Определению отрицания можно придать форму таблицы истинности, в которой «и» означает «истинно» и «л» - «ложно».
А | -А |
И | Л |
Л | И |
В результате соединения двух высказываний при помощи слова «и», мы получаем сложное высказывание, называемое конъюнкцией. Высказывания, соединяемые таким способом, называются членами конъюнкции. Конъюнкция истинна только в случае, когда оба входящих в нее высказывания являются истинными; если хотя бы один из ее членов ложен, то вся конъюнкция ложна. Обозначаем конъюнкцию символом &. Таблица истинности для конъюнкции:
А | В | А&В |
И | И | И |
И | Л | Л |
Л | И | Л |
Л | Л | Л |
Соединяя два высказывания с помощью слова «или», мы получаем дизъюнкцию этих высказываний. Высказывания, образующие дизъюнкцию этих высказываний, называются членами дизъюнкции. Символ V будет обозначать дизъюнкцию в неисключающем смысле, для дизъюнкции в исключающем смысле будет использоваться символ V`. Таблицы для двух видов дизъюнкции показывают, что неисключающая дизъюнкция истина, когда хотя бы одно из входящих в нее высказываний истинно, и ложно, только когда оба ее члена ложны; исключающая дизъюнкция истинна, когда истинным является только один из ее членов, и она ложна, когда оба ее члены истинны или оба ложны.