Смекни!
smekni.com

Логика как предмет (стр. 1 из 3)

МОДАЛЬНАЯ ЛОГИКА

1. ЛОГИЧЕСКИЕ МОДАЛЬНОСТИ

Модальность — это оценка высказывания, данная с той или иной точки зрения. Модальная оценка выражается с помощью по­нятий «необходимо», «возможно», «доказуемо», «опровержимо», «обязательно», «разрешено» и т.п. Модальные высказывания — это высказывания, содержащие хотя бы одно из таких понятий. Мо­дальные высказывания делятся на типы в зависимости от той точ­ки зрения, на основе которой формулируются выражаемые ими характеристики.

Модальная логика — раздел логики, в котором исследуются ло­гические связи модальных высказываний.

Модальная логика слагается из ряда разделов, или направле­ний, каждое из которых занимается модальными высказывания­ми определенного типа. Фундаментом модальной логики являет­ся логика высказываний: первая есть расширение второй.

Теория логических модальностей изучает связи логических мо­дальных высказываний, т.е. высказываний, включающих логичес­кие модальные понятия: «логически необходимо», «логически воз­можно», «логически случайно» и т.п.

Логически необходимое высказывание можно определить как высказывание, отрицание которого представляет собой логическое противоречие. Внутренне противоречивы, например, высказывания «Неверно, что если неон — инертный газ, то неон — инертный газ» и «Неверно, что трава зеленая или она не зеленая». Это озна­чает, что утвердительные высказывания «Если неон — инертный газ то неон — инертный газ» и «Трава зеленая или она не зеленая» являются логически необходимыми. Понятие логической необходимости связано с понятием логического закона: логически необходимы законы логики и все, что вытекает из них. Логически необходимы, таким образом, все рассматривавшиеся ранее зако­ны логики высказываний.

Истинность логически необходимого высказывания устанав­ливается независимо от опыта, на чисто логических основаниях. Логическая необходимость является, таким образом, более сильным видом истины, чем фактическая истинность. Например, вы­сказывание «Снег бел» фактически истинно, для подтверждения его

Задачи логики.

1. Правильное рассуждение.

Слово «Логика» употребляется довольно часто, но в разных значениях. Нередко говорят о логике событий, логике характера и т. п. В этих случаях имеется в виду определенная последовательность и зависимость событий или поступков, наличие в них некоторой общей линии.

Формальная логика – наука о законах и операциях правильного мышления. Основной задачей логики является отделение правильных способов рассуждения (выводов, умозаключений) от неправильных. Правильные выводы называются также обоснованными, последовательными или логичными.

Рассуждение представляет собой определенную, внутренне обусловленную связь утверждений. Отличительная особенность правильного вывода заключается в том, что от истинных посылок он всегда ведет к истинному заключению.

2. Логическая форма.

Своеобразие формальной логики связано, прежде всего, с ее основным принципом, в соответствии с которым правильность рассуждения зависит только от его логической формы. Самым общим образом форму рассуждения можно определить как способ связи входящих в это рассуждение содержательных частей.

3.Дедукция и индукция.

Умозаключение – это логическая операция, в результате которой из одного или нескольких принятых утверждений (посылок) получается новое утверждение – заключение (следствие). В зависимости от того, существует ли между посылками и заключением связь логического следствия, можно выделить два вида умозаключений.

В дедуктивном умозаключении эта связь опирается на логический закон, в силу чего заключение с логической необходимостью вытекает из принятых посылок. Отличительная особенность такого умозаключения в том, что оно от истинных посылок всегда ведет к истинному заключению.

В индуктивном умозаключении связь посылок и заключения опирается не на закон логики, а на некоторые фактические или психологические основания, не имеющие чисто формального характера. В таком умозаключении заключение не следует логически из посылок и может содержать информацию, отступающую от них.

Индукция не дает полной гарантии получения новой истины из уже имеющихся. Максимум, о котором можно говорить, это определенная степень вероятности выводимого утверждения.

Особенно характерными дедукциями являются логические переходы от общего знания к частному.

4. Интуитивная логика.

Под интуитивной логикой обычно понимают интуитивные представления о правильности рассуждений, сложившееся стихийно в процессе повседневной практики мышления.

Интуитивная логика успешно справляется со своими задачами в повседневной жизни, но совершенно недостаточна для критики неправильных рассуждений.

5. Некоторые схемы правильных рассуждений.

В правильном рассуждении заключение вытекает из посылок с логической необходимостью, и общая схема такого рассуждения представляет собой логический закон.

Логические законы лежат в основе логически совершенного мышления. Рассуждать логически правильно – значит рассуждать в соответствии с законами логики.

Вот некоторые, наиболее часто используемые схемы:

· Если есть первое, то есть второе; есть первое; следовательно, есть второе. Эта схема позволяет от утверждения условного высказывания и утверждения его основания перейти к утверждению условного следования.

· Если есть первое, то есть второе; но второго нет; значит, нет первого. Посредством этой схемы от утверждения условного высказывания и отрицания его следствия осуществляется переход к отрицанию основания высказывания.

· Если есть первое, то есть второе; следовательно, если нет второго, то нет и первого. Эта схема позволяет, используя отрицание, менять местами высказывания.

· Есть, по меньшей мере, или первое или второе; но первого нет; значит, есть второе. Например: «Бывает день и ночь; сейчас ночи нет; следовательно, сейчас день».

· Либо имеет место первое, либо второе; есть первое; значит, нет второго. Посредством этой схемы от утверждения двух взаимоисключающих альтернатив и установления того, какая из них присутствует, осуществляется переход к отрицанию другой альтернативы.

· Неверно, что есть и первое, и второе; следовательно, нет первого или второго. Есть первое или есть второе; значит, неверно, что нет первого и нет второго. Эти и близкие им схемы позволяют переходить от утверждений с союзом «и» к утверждениям с союзом «или», и наоборот.

6. Традиционная и современная логика.

История логики охватывает около двух с половиной тысячелетий. «Старше» формальной логики только философия и математика.

На первом этапе, обычно называемом традиционной логикой, формальная логика развивалась очень медленно. Кант (1724-1804) говорил, что формальная логика является завершенной наукой, не продвинувшейся со времени Аристотеля ни на одан шаг. Г. Лейбниц(1646-1716) дал ясное выражение идеям представить доказательство как вычисление, подобное вычислению в математике. Идеи Лейбница не оказали, однако, заметного влияния на его современников. Фреге (1848-1925) в своих работах стал применять формальную логику для исследования оснований математики. Фреге был убежден, что «арифметика есть часть логики и не должна заимствовать ни у опыта, ни у созерцания никакого обоснования».

Известный русский физик Эренфест первым высказал гипотезу о возможности применения современной ему логики в технике.

7. Современная логика и другие науки.

С момента своего возникновения логика была самым тесным образом связана с философией. В течение многих веков логика считалась, подобно психологии, одной из «философских наук».

Математическая логика возникла, в сущности, на стыке двух столь разных наук, как философия, или точнее – философская логика, и математика. Тесная связь современной логики с математикой придает особую остроту вопроса о взаимных отношениях этих двух наук. Согласно Фреге и Расселу математика и логика – это всего лишь две ступени в развитии той же самой науки. Математика может быть полностью сведена к логике, и такое чисто логическое обоснование математики позволит установить ее истинную и наиболее глубокую природу. Этот подход к обоснованию математики получил название логицизма.

Современная логика также тесно связана с кибернетикой – наукой о закономерностях управления процессами и системами в любых областях: в технике, в живых организмах, в обществе. Основоположник кибернетики, американский математик Винер не без оснований подчеркивал, что само возникновение кибернетики было бы немыслимо без математической логики.

Помимо кибернетики современная логика находит широкое приложение и во многих других областях науки и техники.

Слова и вещи.

1. Язык как знаковая система.

Язык представляет собой необходимые условия существования абстрактного мышления. Он возник одновременно с сознанием и мышлением. Логический анализ мышления всегда имеет форму исследования языка, в котором оно протекает и без которого, оно не является возможным. В этом плане логика – наука о мышлении – есть в равной мере и наука о языке.

Язык представляет собой систему знаков, используемую для целей коммуникации и познания. Системность языка выражается в том, что каждый язык, помимо словаря, имеет также синтаксис и семантику. Синтаксические правила языка устанавливают способы образования сложных выражений из простых. Семантические правила определяют способы придания значений выражениям языка.

Правила значения обычно делятся на три группы:

· Аксиоматические. Такие правила требуют принятия предложений определенного вида во всех обстоятельствах.