Смекни!
smekni.com

Доказательство и опровержение 2 (стр. 3 из 3)

2. Правила и ошибки по отношению к аргументации

Правила:

· Аргументы, приводимые для доказательства тезиса, должны быть истинными и быть достаточным основанием для доказательства тезиса.

· Аргументы должны быть суждениями, истинность которых доказана самостоятельно, независимо от тезиса.

Ошибки:

· Ложность основания (“Основное заблуждение”). В качестве аргументов берутся не истинные, а ложные суждения, которые выдают или пытаются выдать за истинные. Ошибка может быть непреднамеренной. Например, геоцентрическая система Плотомея была построена на основании ложного допущения, согласно которому Солнце вращается вокруг Земли. Ошибка может быть и преднамеренной (софизмом), совершенной с целью запутать, ввести в заблуждение других людей (например, дача ложных показаний свидетелями или обвиняемым в ходе судебного расследования, неправильное опознание вещей или людей и т.п.).

Употребление ложных, недоказанных или непроверенных аргументов нередко сопровождается оборотами: “всем известно”, “давно установлено”, “совершенно очевидно”, “никто не станет отрицать” и т.п. Слушателю как бы оставляется одно: упрекать себя за незнание того, что давно и всем известно.

· “Предвосхищение оснований”. Эта ошибка совершается тогда, когда тезис опирается на недоказанные аргументы, последние же не доказывают тезис, а только предвосхищают его.

· “Порочный круг”. Ошибка состоит в том, что тезис обосновывается аргументами, а аргументы обосновываются этим же тезисом. Эта разновидность ошибки “применение недоказанного аргумента”.

3. Правила и ошибки по отношению к демонстрации

Правила:

· Тезис должен быть заключением, логически следующим из аргументов по общим правилам умозаключений или полученным в соответствии с правилами косвенного доказательства.

Ошибки:

· Мнимое следование. Если тезис не следует из приводимых в его подтверждение аргументов, то возникает ошибка, называемая “не следует”. Иногда вместо правильного доказательства аргументы соединяют с тезисом посредством слов: “следовательно”, “итак”, “таким образом”, “в итоге имеем” и т.п., — полагая, что установлена логическая связь между аргументами и тезисом. Эту логическую ошибку часто неосознанно допускают люди, не знакомые с правилами логики, полагающиеся на свой здравый смысл и интуицию.
В результате возникает словесная видимость доказательства.

· .От сказанного с условием к сказанному безусловно. Аргумент, истинный только с учетом определенного времени, отношения, меры, нельзя приводить в качестве безусловного, верного во всех случаях. Так, если кофе полезен в небольших дозах (например, для поднятия артериального давления), то в больших дозах он вреден. Аналогично мышьяк ядовит, но в небольших дозах его добавляют в некоторые лекарства. Лекарства врачи должны подбирать для больных индивидуально. Педагогика требует индивидуального подхода к учащимся; этика определяет нормы поведения людей, и в различных условиях они могут несколько варьироваться (например, правдивость — положительная черта человека, разглашение военной тайны — преступление).

Ошибки в демонстрации

Логические ошибки делятся на паралогизмы и софизмы.

Паралогизмы - это неумышленные логические ошибки, обусловленные нарушением законов и правил логики. Паралогизм не является, в сущности, обманом, так как не связан с умыслом “подменить” истину ложью.

В отличие от паралогизмов софизмы - результат преднамеренного обмана, умышленные логические ошибки. Название "софизм" происходит от древнегреческого слова sophisma - хитрая уловка, выдумка. Софизм представляет собой рассуждение, кажущееся правильным, но содержащее скрытую логическую ошибку и служащее для придания видимости истинности ложному заключению. Софизм является особым приемом интеллектуального мошенничества, попыткой выдать ложь за истину и тем самым ввести в заблуждение.

Например, “лекарство, принимаемое больным, есть добро; чем больше делать добра, тем лучше; значит, лекарство нужно принимать в больших дозах”.

Один из вариантов парадокса был, например, использован Сервантесом в "Дон-Кихоте". Среди задач, которые предлагались Санчо-Панса, в бытность его губернатором острова, была следующая. На острове находится мост и возле этого моста виселица. Каждый переходящий через мост должен ответить на вопрос, куда он идет? Если ответ будет правильным, его пропустят, в противном случае повесят. Один ответ был такой, что он привел в замешательство стражей острова: "Я пришел, чтобы быть повешенным". Если его повесят, то получается, что он сказал правду и, значит, его надо пропустить; если же его пропустят, выйдет, что он сказал неправду и поэтому должен быть повешен.

Математические софизмы собраны в целом ряде книг. Так, С. Коваль описывает математические софизмы: “каждая окружность имеет два центра”; “каждый треугольник — равнобедренный”.

Я.И. Перельман приводит “алгебраические комедии”: 2x2=5; 2=3. Софизмы использовались и теперь продолжают использоваться для тонкого, завуалированного обмана. В этом случае они выступают в роли особого приема интеллектуального мошенничества, попытки выдать ложь за истину и тем самым ввести в заблуждение.

Например, 2x2=5. Требуется найти ошибку в следующих рассуждениях. Имеем числовое тождество: 4:4=5:5. Вынесем за скобку в каждой части этого тождества общий множитель. Получим — 4(1:1)=5(1:1). Числа в скобках равны. Поэтому 4=5, или 2x2=5. [1] Но если записать выражение через дробь, то все встанет на свои места.

Заключение

Доказательство и опровержение являются необходимым и наиболее сложным этапом мыслительного процесса. Их использование в различных видах практической деятельности предполагает глубокое значение и умение применять умозаключения, правила вывода умозаключений, несоблюдение которых (осознанно или неосознанно) приводит к невозможности получить человеком истинные знания о действительности.

Список использованной литературы:

1. Гетманова А.Д. Учебник по логике – М., 1994

2. Ивлев Ю.В. Логика – М., 1992

3. Хоменко Е.А. Логика – М., 1971