Смекни!
smekni.com

Вибірковий метод визначення попиту (стр. 2 из 3)

Важливою особливістю типової вибірки є те, що вона може дати точніші порівняно з іншими способами відбору одиниць у вибіркову сукупність результати. Оскільки похибка типової вибірки визначається середньою з групових дисперсій, то репрезентативність такої вибірки забезпечується поділом генеральної сукупності на якісно однорідні групи. Якщо групи об’єднують однорідні елементи, а групові середні помітно різні, варіація ознаки в групах буде значно меншою, ніж в цілому по сукупності. У такому разі середня з групових дисперсій буде меншою за дисперсію по сукупності, а отже, й похибка типової вибірки порівняно з власне-випадковою буде менша. Забезпечити більшу точність типової вибірки можна обґрунтованим вибором ознаки поділення генеральної сукупності, кількості груп, обсягів кожної з них і способів відбору. Зменшення варіації ознаки за поділу сукупності можливе лише у тому разі, коли ознака поділення корелює з ознакою, характеристики якої оцінюються. Чим щільніший зв’язок між ознаками, тим помітніше зменшення похибки.

Якісно однорідні групи за типової вибірки можуть утворюватися як в результаті спеціально проведеного типового групування одиниць генеральної сукупності, так і в результаті використання тих, що вже є, у тому числі й тих, що склалися природно. Так, у разі вивчення споживацького попиту на певній території магазини, що продають товар, попит на який досліджується, можуть групуватися за їх типом (універмаги, магазини культтоварів та ін.).

У більшості випадків використовуються типові вибірки з неоднаковою кількістю елементів. Проте з кожної типової групи можна відібрати кількість одиниць, пропорційну їх чисельності, тобто використовувати пропорційний типовий відбір.

За визначення статистичних показників типової вибірки не можна застосовувати відповідні стандартні функції Excel. Це пов’язане з тим, що такі функції призначені для обчислення показників вибірки, всі елементи якої входять до однієї групи, а в типовій вибірці треба обчислювати статистичні показники по варіаційному ряду, в якому дані об’єднано (згруповано) за значенням ознаки та підраховано кількість випадків повторення кожного з них. Тому середня вибірки та дисперсія середньої розраховуються як зважені показники за такими формулами:

xcep = S xі fі / S fі ,

s2 = S (xі – xcep)2 fі / S fі ,

де xі — значення ознаки в і-й групі;

fі — кількість елементів, що входять до цієї групи.

Якщо в рамках виділеного бюджету неможливо точно визначити склад певної групи (наприклад, у випадку, коли це потребує проведення суцільної вибірки), то використовують територіальну вибірку. Основною ідеєю її є те, що елементи вибірки можуть бути ідентифіковані у межах певного району й можна скласти список цих районів. У маркетингових дослідженнях методи територіальної вибірки найчастіше застосовуються в опитуванні домогосподарств. Часто така вибірка є єдиним способом отримання ймовірної вибірки на великій території з недостатньо визначеними елементами. Може застосовуватися й техніка «зосередження», що полягає у створенні невеликих осередків проведення вибіркових досліджень. Це має місце у пробному маркетингу (наприклад, коли необхідно оцінити можливі обсяги продажу у регіональному масштабі за запуску у виробництво нового продукту або нової маркетингової програми). Вплив техніки «зосередження» на похибку вибірки можна оцінити лише тоді, коли відомі кореляційні залежності між елементами кожного осередку. Оскільки у пробному маркетингу дуже складно провести кореляцію всередині осередку, то й неможливо визначити ступінь точності проведених досліджень.

Цільова вибірка полягає у систематичному відборі елементів з метою залучення до дослідження достатньої кількості елементів кожного основного типу. Але використання результатів такої вибірки обмежується неможливістю оцінити помилку вибірки в якийсь об’єктивний спосіб. До неї вдаються за вивчення реакції ринку на новий виріб або на модернізацію старого, коли ймовірнісна вибірка потребує великих витрат. При цьому робиться припущення, що смаки споживачів більш-менш ідентичні, принаймні, всередині однієї групи.

Помилка вибірки

Після проведення певної кількості спостережень отримують розподілення результатів (вибіркових оцінок) того самого істинного рівня (наприклад, низки характеристик населення). Це вибіркове розподілення підлягає законові нормального розподілення, якщо вибірка достатньо велика. Оскільки істинний рівень може не збігатися з рівнем вибіркових характеристик, необхідно брати до уваги похибку вибірки. У цьому разі можна знайти ступінь вірогідності вибіркових характеристик.

У математичній статистиці значення середньої похибки визначається за формулою

,

де s2 — дисперсія вибіркової сукупності;

n — чисельність одиниць вибіркової сукупності;

k — коефіцієнт, який для повторного відбору дорівнює одиниці, а для безповторного — 1 – n/N, де N — чисельність генеральної сукупності.

Середня похибка вибірки використовується для визначення межі відхилень характеристик вибірки від характеристик генеральної сукупності. Суттєвим є твердження, що ці відхилення не будуть більші за значення, яке в статистиці називається граничною помилкою вибірки, лише з певним ступенем імовірності.

Гранична помилка вибірки пов’язана із середньою похибкою вибірки співвідношенням

D = m× t,

де t — коефіцієнт кратності помилки.

Значення коефіцієнта кратності помилки залежить від того, з якою довірчою ймовірністю (надійністю) слід гарантувати результати вибіркового обстеження. Для його визначення користуються таблицею значень інтеграла ймовірностей нормального закону розподілення. В економічних дослідженнях звичайно обмежуються значеннями t, що не перевищують двох-трьох одиниць:

Кратність помилки Імовірність (надійність) Кратність
помилки
Імовірність (надійність) Кратність
помилки
Імовірність (надійність)
0,1 0,0797 1,5 0,8664 2,6 0,9907
0,5 0,3829 2,0 0,9545 3,0 0,9973
1,0 0,6827 2,5 0,9876 4,0 0,999937

При цьому вибір тієї чи іншої довірчої імовірності залежить від того, з яким ступенем вірогідності слід гарантувати результати вибіркового обстеження (найчастіше спираються на ймовірність 0,9545, за якої t дорівнює 2).

Якщо в формулу для визначення D підставити конкретний вміст m, то для обчислення граничної помилки можна буде використати такі вирази:

¾ у разі альтернативної ознаки

,


де w — вибіркова частка, яка визначається з відношення одиниць, які мають досліджувану ознаку, до загальної чисельності одиниць вибіркової сукупності;

¾ у разі кількісної ознаки

,

де s2 — дисперсія кількісної ознаки у вибірці.

Визначення розміру вибірки

У разі організації вибіркових досліджень важливо визначити, наскільки великим має бути обсяг вибірки. Для загальної відповіді на це питання слід знати:

¾ витрати на проведення вибіркового дослідження;

¾ витрати на отримання наближених оцінок;

¾ ступінь мінливості процесу;

¾ ступінь надійності результатів, необхідний для прийняття подальших рішень.

Обминаючи вартісні фактори, розмір оптимальної вибірки можна визначити, базуючись на формулі граничної похибки. Приміром, за безповторного відбору для середньої кількісної ознаки необхідна чисельність обчислюється так:

,

де n — чисельність одиниць вибірки;

N — обсяг генеральної сукупності;

t — коефіцієнт кратності помилки (або коефіцієнт довіри);

s2 — дисперсія;

D — гранична (задана) помилка середньої (звичайно вибирається рівною 10 % від значення середньої).

Нехай для обстеження, що має на меті виявити потреби у певному товарі тривалого використання в регіоні, де мешкає 10 тис. сімей, необхідно провести анкетування.

Умовно приймаємо, що в кожній квартирі проживає одна сім’я і на неї виділяється одна анкета. Припустимо, що попередніми дослідженнями встановлено, що середній розмір покупки та дисперсія становлять відповідно 17 і 150 грн. Виходячи з того, що гранична помилка не повинна перевищувати 10 % від середньої і що результати обстеження необхідно гарантувати з довірчою імовірністю, не меншою 0,954, чисельність вибірки має становити

.

Ясна річ, деяка частина анкет не повертається (припустимо, практика показує, що приблизно кожна п’ята), тому треба збільшити кількість анкет до 255. Отже, можемо зробити висновок, що необхідно включити у вибірку щонайменше кожну 40-у квартиру.

Технологію визначення розміру вибірки pозглянемо на прикладі вибору магазинів для вивчення на деякій території споживацького попиту на певний товар.

Для цього на окремому робочому листі Excel слід створити список усіх магазинів, що торгують товаром, попит на який вивчається (рис. 2.3.7).

Заголовок списку мусить мати такі поля: номер магазину, тип (наприклад, універмаг і культтовари), місцезнаходження, загальний товарообіг, товарообіг по товару, частка продажу товару в товарообігу магазину.


Оформлення заголовка списку магазинів

A B C D E F
1 ВИЗНАЧЕННЯ ОБСЯГУ ВИБІРКИ
2 Номер магазину Тип магазину Адреса Загальний товарообіг Товарообігпо товару Частка продажу товару ( %)
3

У цей список щодо кожного магазину заноситься інформація у перші п’ять стовпців (A, B, C, D, E). У клітину F3 заводиться формула =D3/E3*100 і копіюється на всі рядки списку.