Смекни!
smekni.com

Электропривод транспортера кормов КРС-15 (стр. 3 из 4)

Точка Момент Скорость
1 M1 = 0 w1 = w0 = 157рад/с
2 M2 = Mн = 10,27Н.м w2 = wн = 146,01рад/с
3 M3 = Mк =22,59Н.м w3 = wк = 108,6рад/с
4 M4 = Mmin =16,43Н.м w4 = wmin = 23рад/с
5 M5 = Mп = 22,59Н.м w5 = wп = 0рад/с

Кривую избыточного момента заменяют ступенчатым графиком. В пределах каждой ступени избыточный момент не меняется и время разгона на i-том участке ti будет равно:

(3.7)

Таким образом, для первого участка получаем:

. (3.8)

Аналогично рассчитываем для остальных участков. Результаты расчетов заносим в таблицу 7.2.

Таблица 5. Построение кривой разбега.

w, рад/с 20 40 60 80 90 105
М, Н×м 23 28 35 38 34 0
Dt, с 0,1 0,16 0,197 0,242 0,3 0,4

Расчеты по определению превышения температуры электродвигателя за время пуска.

Повышение температуры обмоток асинхронного электродвигателя с короткозамкнутым ротором во время пуска можно определить упрощенным методом, считая, что все потери идут на нагрев:

(3.9)

где DW – потери энергии во время пуска, Дж;

C1 – теплоемкость обмоток.

,

где с1 – удельная теплоемкость меди, с1 = 385Дж/кг×К;

т1 – масса обмоток, примем т1 =2,1кг.

Имеем:

4 Заключение о правильности предварительного выбранного электродвигателя по всем критериям

Заключение о правильности выбора электродвигателя делаем с учетом тепловых и механических переходных режимов, колебаний напряжений в сети.

Максимальная температура двигателя не превышает допускаемой для данного класса изоляции.

Электродвигатель обеспечивает разгон агрегата за время менее 10с.

1)Проверка по условиям пуска:

Номинальный момент электродвигателя по условиям пуска:

Условие выполняется – 10,96Н∙м >8,7Н∙м.

2)Проверка на устойчивость работы электродвигателя выполняется по перегрузочной способности:

а) по условию статической устойчивости:

,

где Рмакс – максимальная мощность рабочей машины, кВт;

u – относительное рабочее напряжение, u = 0.9.

Условие выполняется – 1,5кВт > 1,03 кВт.

б) по условию динамической устойчивости:

,

где Ммакс – максимальный момент рабочей машины (из ее механической характеристики) , Н∙м.

Условие выполняется – 8,7Н∙м > 6,3Н∙м.

Так как все условия соблюдаются, то можно считать, что данный электродвигатель подобран правильно.

5 Разработка принципиальной электрической схемы управления

Пояснение по составлению схемы.

Принципиальная схема должна полностью удовлетворять требованиям ГОСТа и поддерживать требуемый технологический процесс. Схема также должна работать в ручном и автоматическом режиме иметь защитную аппаратуру ,предохраняющую от к.з. ,нагрузки и т.д..

5.2.Выбор аппаратов защиты электрических цепей и аппаратов защиты электродвигателя по критерию эффективности.

Критерий эффективности срабатывания защит рассчитывается по формуле:

,(5.1)

где Рij – вероятность отказа установки по i-той причине,

qki – вероятность срабатывания k-той защиты по i-той причине.

Таблица 6 Значения вероятностей отказа транспортёров по различным причинам.

Неполнофазный режим Заторможенный ротор Перегрузка Увлажненная изоляция Нарушение охлаждения
0,23 0,71 0 0,06 0

Таблица 7 Значения вероятностей срабатывания защит по различным причинам.

Тип аппарата защиты Неполнофаз-ного режима Заторможенного ротора Перегрузки Увлажненная изоляция Нарушение охлаждения
Автоматический выключатель с тепловым расцепителем 0,5 0,4 0,7 0 0
УВТЗ-1М 0,76 0,67 0,91 0 0,91
ФУЗ-М 0,95 0,85 0,66 0 0
ЕЛ-8, ЕЛ-10 и т.п. 0,7 0 0 0 0
РУД-05, ЗОУП-25 и т.п. - - - 0,95 -

Таблица 8 Результаты расчета критерия эффективности.

Тип аппарата защиты Автоматический выключатель с тепловым расцепителем УВТЗ-1М ФУЗ-М ЕЛ-8, ЕЛ-10 и т.п. РУД-05, ЗОУП-25 и т.п.
Э 0,399 0,65 0,822 0,161 0

Как показывает расчет, наиболее подходящей защитой является ФУЗ-М.

Выбор других элементов схемы.

Основным параметром защитно-коммутационной аппаратуры является электрический ток, пропорциональный нагрузке.

Для защиты электродвигателя от действия токов короткого замыкания и от перегрузки используем автоматический выключатель, тогда расчет параметров коммутационных аппаратов выполняется в следующей последовательности.

Находим расчетный ток электродвигателя (в нашем случае при полной загрузке он будет равен номинальному):

(5.2)

Имеем:

Далее находим максимальный ток электродвигателя (в нашем случае он равен пусковому):

(5.3)

Получаем:

В связи с новыми стандартами республики Беларусь на электроснабжение и электробезопасность зданий и сооружений требуется повсеместно применение защиты оттоков к.з. и от чрезмерной утечки на землю.

Исходя из этих значений, выбираем автоматический выключатель АЕ2023 У3 на номинальный ток 10А с возможностью регулирования номинального тока теплового расцепителя, с уставкой по типу несимметричной утечки на землю 0,03 и 0,1

Тип магнитного пускателя и его номинальный ток выбираем исходя из условия:

(5.4)

Выбираем пускатель– ПМ12-010211 УХЛ3 на ток 10А.

В качестве коммутационного аппарата выбираем автоматический выключатель по условию:

,

где Iрасч.общ. – расчетный ток на всю электрическую схему нашей установки, А.

Выбираем рубильник ВА51Г31- 44000Р IP54 УХЛ на ток 100А.

Для ручного управления установкой выбираем кнопочные выключатели серии КМЕ предназначенных для вторичных цепей контакторов, электромагнитных пускателей и других аппаратов управления.

Кнопки имеют электрически не связанные замыкающие и размыкающие контакты с двойным разрывом. Номинальное напряжение – до 500 В, 50 и 60 Гц переменного и до 220 В постоянного тока. Номинальный ток контактов10А.

В качестве сигнальной арматуры выбираем АЛСУ-12У2 на напряжение 220 В.

Описание работы схемы

На основании описания технологического процесса [2] можно сформулировать следующие требования к схеме управления кормораздатчиком:

- защита электродвигателей от коротких замыканий и перегрузок;

- пуск и отключение кормораздатчика в ручном режиме;

- обеспечение сигнализации работы привода;

Управление транспортёром - кормораздатчиками КРС - 15 (см. графическую часть) может быть осуществлено в ручном режиме. Питание на схему управления подаётся автоматическим выключателем SF. Управление приводом транспортёра осуществляется с помощью кнопок SB1 («Стоп») и SB2 («Пуск»). Сигнализация работы привода осуществляется лампой HL1.

Принципиальная электрическая схема и схема соединений щита управления представлены в графической части.

6 Разработка ящика управления электроприводом

Пояснение о компоновке аппаратов в ящике управления.

Приборы и аппаратуру размещают как внутри, так и на лицевой панели щитов (или на стенке шкафного щита). Их группируют по объектам управления пли по управляемому параметру. В центре щита устанавливают приборы для управления наиболее важным параметром или приборы большего габарита.

На лицевой панели приборы и аппаратуру размещают так, чтобы расстояния от них до основания щита (или площадки обслуживания) находились в пределах:

— для регулирующих и регистрирующих приборов: 1000......1800 мм;

— для показывающих приборов и сигнальной арматуры: 800......2100 мм;

-— для аппаратуры оперативного управления: 700......1600 мм;

— для мнемосхем: 1000......2100 мм.

Источники питания, аппаратура защиты и другие безшкальные приборы и устройства устанавливают с внутренней стороны щита на определенной высоте от его основания:

— источники питания, трансформаторы и стабилизаторы: 1700.....2000 мм;

— предохранители: 1000.....1700 мм;

— реле: 600.....1700мм;

— наборные рейки: не менее 200 мм.

Арматура для освещения щита с газоразрядными источниками света или светильниками типа бра устанавливается в его верхней части таким образом, чтобы хорошо освещалась лицевая панель.

При размещении средств контроля, сигнализации и управления в щитах и пультах, позволяет не только сконцентрировать средства автоматики, но и предохранить их от вредных механических, температурных и других воздействий.