Смекни!
smekni.com

Процесс маркетинговых исследований в Казахстане (стр. 9 из 12)

Такая характеристика шкалы, как расстояние, используется, когда известна абсолютная разница между дескрипторами, которая может быть выражена в количественных единицах. Считается, что шкала имеет начальную точку, если она имеет единственное начало или нулевую точку. Например, возрастная шкала имеет истинную нулевую точку. Однако не все шкалы обладают нулевой точкой для измеряемых свойств. Часто они имею только произвольную нейтральную точку.

3.4 Разработка выборочного плана и определение объема выборки

3.4.1 Основные понятия

Рассмотрим основные понятия, используемые при проведении выборочных исследований.

На данном этапе маркетинговых решений возникает необходимость получить информацию о параметрах «группы», среди членов которой будет проводиться маркетинговое исследование. Например, управляющий маркетингом желает иметь данные об объеме сбыта продуктов его компании через различные типы розничных магазинов («группа»). Такая «группа» в статистике называется генеральной совокупностью или просто совокупностью. Иногда совокупность является достаточно малой по своей численности, и менеджер может изучить всех ее членов. Обычно же это сделать невозможно: изучить, например, мнение всех детей возраста от 3-х до 5 лет относительно игрушек определенного типа. Следовательно, проводится изучение только части совокупности, называемой выборкой.

Выборка является базовым уровнем проводимых исследований.

Необходимо отметить, что, поскольку выборка является частью изучаемой совокупности, полученные от выборки данные, скорее всего не будут в точности соответствовать данным, которые можно было бы получить от всех единиц совокупности. Различие между данными, полученными от выборки, и истинными данными называется ошибкой выборки. Ошибка выборки обусловливается двумя факторами: методом формирования выборки и размером выборки. Эти вопросы будут рассмотрены ниже.

Формирование выборки, прежде всего, основывается на знании контура выборки (sampling frame), под которым понимается список всех единиц совокупности, из которого выбираются единицы выборки. Контур выборки неизбежно содержит ошибку, называемую ошибкой контура выборки и характеризующую степень отклонения от истинных размеров совокупности. Существуют три главные проблемы формирования выборки.

При формировании выборки используются вероятностные (случайные) и не вероятностные (неслучайные) методы.

Если все единицы выборки имеют известный шанс (вероятность) быть включенными в выборку, то выборка называется вероятностной (случайной). Если этот шанс (вероятность) неизвестен, то выборка называется невероятностной (неслучайной). К сожалению, в большинстве маркетинговых исследований из-за невозможности точного определения размера совокупности не представляется возможным точно рассчитать вероятности. Поэтому термин «известная вероятность» скорее основан на использовании определенных методов формирования выборки, чем на знании точных размеров совокупности.

Вероятностные методы включают в свой состав: простой случайный отбор, систематический отбор, кластерный отбор и стратифицированный отбор.

Простой случайный отбор предполагает, что вероятность быть избранным в выборку известна и является одинаковой для всех единиц совокупности. Вероятность быть включенным в выборку определяется отношением объема выборки к размеру совокупности.

Простой случайный отбор может осуществляться с помощью следующих методов: формирование выборки вслепую и с помощью таблицы случайных чисел.

При использовании метода формирования выборки вслепую единицы совокупности в соответствии с их фамилиями, названиями или другими признаками вносятся в карточки, которые в перемешанном виде помещаются в какую-то непрозрачную емкость (ящик, коробку и т.п.). Из данной емкости кто-то случайным образом вытягивает число карточек, определяемое объемом выборки.

В таблицах случайных чисел содержатся числа, порядок включения которых в таблицу осуществлен случайным образом. Единицам совокупности присваивают порядковые номера. В таблице случайных чисел выбирают любую начальную точку и, двигаясь в произвольном направлении и произвольно меняя направление движения, выбирают необходимое количество номеров из числа присвоенных, равное заранее установленному объему выборки.

Использование простого случайного отбора гарантирует, что каждая единица совокупности известна и имеет равные шансы быть включенной в выборку.

Однако чтобы можно было эти методы использовать, необходимо предварительно определить каждую единицу совокупности, что при больших размерах совокупности сделать достаточно сложно, а порой и невозможно.

Данный недостаток существенно снижается при использовании компьютера для присвоения единицам совокупности номеров и формирования выборки. При телефонном интервью компьютер может генерировать случайным образом телефонные номера: он имеет генератор случайных чисел.

Начальная часть метода систематического отбора соответствует начальной части метода простого случайного отбора: необходимо получить полный список единиц генеральной совокупности.

Однако далее вместо присвоения порядковых номеров используется показатель «интервал скачка», рассчитанный как отношение размера совокупности к объему выборки. Например, если используется телефонный справочник и интервал скачка был определен равным 250, то это означает, что каждый 250-й телефонный номер включается в выборку. Для определения же начальных страницы и колонки справочника используются случайные числа.

Очевидно, что данный метод является более экономичным и быстрым по сравнению с методом простого случайного отбора. Случайные числа используются только на начальной стадии его реализации. Вместе с тем такой метод дает менее репрезентативные результаты по сравнению с методом простого случайного отбора.

Особенно широко метод систематического отбора используется, когда для различных видов совокупностей имеются различные справочники, списки, спецификации и т.п. материалы.

Другим методом вероятностного отбора является кластерный отбор, основанный на делении совокупности на подгруппы, каждая из которых представляет совокупность в целом. Базовая концепция данного метода очень похожа на базовую концепцию метода систематического отбора, однако реализация этой концепции осуществляется по-другому. Предположим, что исследуется мнение населения какого-то региона относительно марки какого-то товара.

Регион разбивается на четко определяемые части (кластеры), например области. Исследователь может считать, что выделенные кластеры являются идентичными и мнение населения этих областей характерно для региона в целом. Далее одна из областей (один кластер) выбирается случайным образом, определяется совокупность для этой области, в ней проводится соответствующее исследование, а выводы обобщаются на совокупность всего региона (одноступенчатый подход).

Формирование выборки можно осуществить и на основе двухступенчатого подхода. В этом случае после первоначального случайного формирования выборки кластеров (в нашем примере случайным образом выбирается несколько областей) используется один из вероятностных методов для проведения исследований среди единиц выборки. Очевидно, что репрезентативность результатов, полученных на основе исследований для группы кластеров, является более высокой, чем для одного кластера. Однако этот подход является более дорогим по сравнению с одноступенчатым подходом.

Иногда при проведении исследований, когда общую исследуемую территорию можно разбить на отдельные зоны, при формировании выборки используется выборочная решетка, накладываемая на карту обследуемой территории. Каждая ячейка решетки определяет конкретный кластер. Далее используется один из описанных методов формирования выборки. К сожалению, метод выборочной решетки не учитывает административные, естественные (реки, улицы и т.п.) и другие границы.

В основе всех описанных методов лежит предположение, что любая совокупность характеризуется симметричным распределением ее ключевых характеристик. Другими словами, каждая выборка достаточно полно характеризует всю совокупность, различные крайности в выборке уравновешивают друг друга. Но такая ситуация на практике встречается крайне редко. Скажем, исследуется рыночный потенциал определенного региона для какого-то товара. Население больших, средних и малых городов, сельской местности данного региона отличается по уровню образования, дохода, образу жизни и т.п.

В случае несимметричного распределения совокупности последняя разделяется на различные подгруппы (страты), например по уровню доходов, и выборки формируются из этих подгрупп, по сути дела являющихся сегментами рынка. Такой метод носит название стратифицированного отбора.

При использовании данного метода, прежде всего, следует выбрать некоторую наблюдаемую характеристику (признак), характеризующую каждую единицу совокупности, например уровень дохода.

Далее для каждой страты с помощью случайного отбора формируется выборка.

Если размер выборки для определенной страты пропорционален размеру страты по отношению ко всей совокупности, то выборка называется пропорционально стратифицированной. В случае непропорционально стратифицированной выборки необходимо использовать весовые коэффициенты, уравновешивающие размеры страт.

При применении невероятностных методов отбора формирование выборки осуществляется без использования понятий теории вероятностей, вследствие чего невозможно рассчитать вероятность включения в выборку единицы совокупности.

Кратко охарактеризуем следующие невероятностные методы отбора: отбор на основе принципа удобства, отбор на основе суждений, формирование выборки в процессе обследования и формирование выборки на основе квот.