Повторяемость — прецизионность в условиях повторяемости. В отечественных НД наряду с термином «повторяемость» используют термин «сходимость».
Условия повторяемости (сходимости) — условия, при которых независимые результаты измерений (или испытаний) получаются одним и тем же методом на идентичных объектах испытаний, в одной и той же лаборатории, одним и тем же оператором, с использованием одного и того же оборудования, в пределах короткого промежутка времени. В качестве мер повторяемости в Стандарте 5725 используются стандартные отклонения.
Стандартное (среднеквадратическое) отклонение повторяемости (сходимости) — это стандартное (среднеквадратическое) отклонение результатов измерений (или испытаний), полученных в условиях повторяемости (сходимости). Эта норма является мерой рассеяния результатов измерений в условиях повторяемости.
В Стандарте 5725 для крайних условий измерений введены показатели свойств повторяемости и воспроизводимости пределов.
Предел повторяемости (сходимости) — значение, которое с доверительной вероятностью 95% не превышается абсолютной величиной разности между результатами двух измерений (или испытаний), полученными в условиях повторяемости (сходимости).
Воспроизводимость — прецизионность в условиях воспроизводимости.
Условия воспроизводимости — это условия, при которых результаты измерений (или испытаний) получают одним и тем же методом, на идентичных объектах испытаний, в разных лабораториях, разными операторами, с использованием различного оборудования.
Стандартные (среднеквадратические) отклонения воспроизводимости — стандартные (среднеквадратические) отклонения результатов измерений (испытаний), полученных в условиях воспроизводимости. Эта норма является мерой рассеяния результатов измерений (или испытаний) в условиях воспроизводимости.
Предел воспроизводимости — значение, которое с доверительной вероятностью 95% не превышается абсолютной величиной разности между результатами измерений (или испытаний), полученными в условиях воспроизводимости.
Критерии выбора точности измерений
По условиям, определяющим точность результата измерения, методы делятся на три класса.
- Измерения максимально возможной точности, достижимой при существующем уровне техники. К ним относятся в первую очередь эталонные измерения, связанные с максимально возможной точностью воспроизведения установленных единиц физических величин, и, кроме того, измерения физических констант, прежде всего универсальных (например, абсолютного значения ускорения свободного падения и др.).
К этому же классу относятся и некоторые специальные измерения, требующие высокой точности.
- Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторое заданное значение. К ним относятся измерения, выполняемые лабораториями государственного надзора за внедрением и соблюдением стандартов и состоянием измерительной техники и заводскими измерительными лабораториями с погрешностью заранее заданного значения. О Технические измерения, в которых погрешность результата определяется характеристиками средств измерений. Примерами технических измерений являются измерения, выполняемые в процессе производства на машиностроительных предприятиях, на щитах распределительных устройств электрических станций и др.
Классы точности средств измерений
Учет всех нормируемых метрологических характеристик средств измерений является сложной и трудоемкой процедурой. На практике такая точность не нужна. Поэтому для средств измерений, используемых в повседневной практике, принято деление на классы точности, которые дают их обобщенную метрологическую характеристику.
Требования к метрологическим характеристикам устанавливаются в стандартах на средства измерений конкретного типа.
Классы точности присваиваются средствам измерений с учетом результатов государственных приемочных испытаний.
Обозначения классов точности наносятся на циферблаты, щитки и корпуса средств измерений, приводятся в нормативно-технических документах. Классы точности могут обозначаться буквами (например, М, С и т. д.) или римскими цифрами (I, II, III и т. д.).
Класс точности - СИ — обобщенная характеристика, выражаемая пределами допускаемых (основной и дополнительной) погрешностей, а также другими характеристиками, влияющими на точность. Для каждого класса точности устанавливают конкретные требования к метрологическим характеристикам, в совокупности отражающим уровень точности СИ данного класса. Например, для вольтметров нормируют: предел допускаемой основной погрешности и соответствующие нормальные условия; пределы допускаемых дополнительных погрешностей; пределы допускаемой вариации показаний; невозвращение указателя к нулевой отметке. У плоскопараллельных концевых мер длины такими характеристиками являются пределы допускаемых отклонений от номинальной длины и плоскопараллельности; пределы допускаемого изменения длины в течение года. У мер электродвижущей силы (нормальных элементов) нормируют пределы допускаемой нестабильности ЭДС в течение года.
Обозначение классов точности осуществляется следующим образом. Если пределы допускаемой основной погрешности выражены в форме абсолютной погрешности СИ, то класс точности обозначается прописными буквами римского алфавита. Классам точности, которым соответствуют меньшие пределы допускаемых погрешностей, присваиваются буквы, находящиеся ближе к началу алфавита.
Пределы допускаемой основной погрешности для тех СМ, у которых их принято выражать в форме относительной погрешности, обозначаются числами, которые равны этим пределам, выраженным в процентах. Так, класс точности 0,001 нормальных элементов свидетельствует о том, что их нестабильность за год не превышает 0,001%. Обозначения класса точности наносят на циферблаты, щитки и корпуса СИ. СИ с несколькими диапазонами измерений одной и той же физической величины или предназначенным для измерений разных физических величин могут быть присвоены различные классы точности для каждого диапазона или для каждой измеряемой величины. Так, электроизмерительному прибору, предназначенному для измерений напряжения и сопротивления, могут быть присвоены два класса точности: один — как вольтметру, другой — как омметру.
Присваиваются классы точности СИ при их разработке (по результатам приемочных испытаний). В связи с тем что при эксплуатации их метрологические характеристики обычно ухудшаются, допускается понижать класс точности по результатам поверки (калибровки).
Итак, класс точности позволяет судить о том, в каких пределах находится погрешность измерений этого класса. Это важно знать при выборе СИ в зависимости от заданной точности измерений.
Приведите конкретные примеры средств измерений разных классов точности, с которыми вы работали
Я работала с такими средствами измерения разных классов точности, как линейка, вольтметр, амперметр, термометр, весы, танометр.
Список используемой литературы
1. Димов Ю.В. Метрология, стандартизация и сертификация: учебник для вузов, 2-еизд.-Спб: Питер, 2004.
2. Козлов В.П. Стандартизация, метрология и сертификация: учебник для вузов, 3-е изд.- Ростов н/Д: Феникс, 2003.
3. Лифиц И.М. Стандартизация, метрология и сертификация: учебник. 5-е изд., перераб. и доп. – М. : ЮНИТИ-ДАНА, 2005.
4. Сергеев А.Г., Латышев М.В. Сертификация: учебное пособие. – М.: Логос, 2001.