Смекни!
smekni.com

7.Статистическое изучение вариации социально-экономических явлений (стр. 2 из 12)

(1.7.11)

Виды дисперсий и методы их расчета

Для совокупности, сгруппированной по определенному признаку можно рассчитать три вида дисперсий:

- внутригрупповую дисперсию;

- межгрупповую дисперсию;

- общую дисперсию.

Внутригрупповая дисперсия оценивает колеблемость значения индивидуального признака внутри группы. Эта вариация возникает под влиянием неучтенных факторов и не зависит от признака, положенного в основу группировки. Она исчисляется следующим образом:

, (1.7.12)

где

- средняя по изучаемой группе (групповая средняя).

Средняя из внутригрупповых дисперсий отражает ту часть вариации результативного признака, которая обусловлена действием всех прочих неучтенных факторов, кроме фактора, по которому осуществлялась группировка. Средняя из внутригрупповых дисперсий определяется по формуле арифметической взвешенной:

(1.7.13)

Межгрупповая дисперсия отражает ту часть вариации результативного признака, которая обусловлена воздействием признака факторного. Это воздействие проявляется в отклонении групповых средних от общей средней:

(1.7.14)

Общая дисперсия оценивает вариацию изучаемого признака, возникающего под влиянием всех факторов.

Между рассматриваемыми видами дисперсий существует определенная взаимосвязь, которая называется правилом сложения дисперсий:

(1.7.15)

Согласно правилу сложения дисперсий общая дисперсия, возникающая под влиянием всех факторов, равна сумме дисперсий, возникающих под влиянием всех прочих факторов, и дисперсии, возникающей за счет группировочного признака.

Зная любые два вида дисперсий, можно определить или проверить правильность расчета третьего вида.

На основании правила сложения дисперсий можно измерить тесноту связи между группировочным (факторным) и результативным признаками. Для этого рассчитывается:

1) коэффициент детерминации:

(1.7.16)

Коэффициент детерминации показывает, какая доля вариации результативного признака объясняется вариацией признака фактора, положенного в основу группировки.

2) эмпирическое корреляционное отношение:

(1.7.17)

Величина показателя изменяется в пределах от 0 до 1. Чем ближе к 1, тем сильнее взаимосвязь между рассматриваемыми признаками.

Наряду с вариацией индивидуальных значений признака вокруг средней может наблюдаться и вариация индивидуальных долей признака вокруг средней доли. Для анализа этой вариации вычисляются следующие виды дисперсий.

Внутригрупповая дисперсия доли определяется по следующей формуле:

(1.7.18)

Средняя из внутригрупповых дисперсий:

(1.7.19)

Межгрупповая дисперсия:

, (1.7.20)

где

- численность единиц в отдельных группах;

- доля изучаемого признака во всей совокупности, которая определяется по следующей формуле:

(1.7.21)

Общая дисперсия имеет вид:

(1.7.22)

Три вида дисперсии связаны между собой следующим образом:

(1.7.23)

Данная взаимосвязь дисперсий называется теоремой сложения дисперсии доли признака. Эта теорема широко используется в изучении колеблемости качественных признаков.

Выборочное наблюдение

1.8.1 Понятие о выборочном наблюдении

В настоящее время в условиях рыночных отношений в России находит все более широкое применение наиболее совершенный и научно обоснованный способ несплошного наблюдения – выборочное наблюдение, которое используется в работе органов государственной статистики, научно-исследовательских лабораторий и предприятий. Выборочное наблюдение позволяет лучше организовать наблюдение, обеспечивает быстроту проведения, экономию труда и средств на получение и обработку информации.

Под выборочным наблюдением понимается несплошное наблюдение, при котором статистическому обследованию (наблюдению) подвергаются единицы изучаемой совокупности, отобранные случайным способом. Выборочное наблюдение ставит перед собой задачу – по обследуемой части дать характеристику всей совокупности единиц при условии соблюдения всех правил и принципов проведения статистического наблюдения и научно организованной работы по отбору единиц.

Совокупность, из которой отбираются элементы для обследования, называют генеральной, а совокупность, которую непосредственно обследуют, – выборочной (выборка). Статистические характеристики выборочной совокупности рассматриваются как оценки соответствующих характеристик генеральной совокупности. Поскольку выборочная совокупность неточно воспроизводит структуру генеральной, то выборочные оценки также не совпадают с характеристиками генеральной совокупности. Различия между ними называют ошибками выборки.

Как и сама выборочная характеристика, ошибка выборки является случайной величиной и зависит:

1) от степени вариации изучаемого признака;

2) от численности выборочной совокупности;

3) от способа формирования выборочной совокупности;

4) от принятого уровня достоверности результата исследования.

Достоверность рассчитанных по выборочным данным характеристик в значительной степени определяется репрезентативностью выборочной совокупности, которая, в свою очередь, зависит от способа отбора единиц из генеральной совокупности. В каждом конкретном случае в зависимости от целого ряда условий, а именно, сущности исследуемого явления, объема совокупности, вариации и распределения наблюдаемых признаков, материальных и трудовых ресурсов, выбирают наиболее предпочтительную систему организации отбора, которая определяется видом, методом и способом отбора.

По виду различают индивидуальный, групповой и комбинированный отбор. При индивидуальном отборе в выборочную совокупность отбираются отдельные единицы генеральной совокупности, при групповом отборе – группы единиц, а комбинированный отбор предполагает сочетание группового и индивидуального отбора.

Метод отбора определяет возможность продолжения участия отобранной единицы в процедуре отбора. Различают повторный и бесповторный способы отбора при формировании выборки.

При повторном отборе численность генеральной совокупности на каждом этапе отбора не изменяется (попавшая в выборку единица после регистрации наблюдаемых признаков возвращается в генеральную совокупность для участия в дальнейшей процедуре отбора) и вероятность отбора каждой единицы остается постоянной.

При бесповторном отборе вероятность попадания каждой единицы в выборку увеличивается по мере процедуры отбора (попавшая в выборку единица не возвращается в совокупность, из которой осуществляется дальнейший отбор).

1.8.2 Способы формирования выборочной совокупности

Способ отбора определяет конкретный механизм или процедуру выборки единиц из генеральной совокупности. В практике выборочных обследований наибольшее распространение получили следующие выборки:

- собственно-случайная;

- механическая;

- типическая;

- серийная;

- многоступенчатая;

- многофазная.

Собственно-случайная выборка заключается в отборе единиц из генеральной совокупности наугад или наудачу без каких-либо элементов системности. Однако прежде чем производить собственно-случайный отбор, необходимо убедиться, что все без исключения единицы генеральной совокупности имеют абсолютно равные шансы попадания в выборку, в списках или перечне отсутствуют пропуски, игнорирования отдельных единиц и т.п. Следует также установить четкие границы генеральной совокупности таким образом, чтобы включение или невключение в нее отдельных единиц не вызывало сомнений.

Технически собственно-случайный отбор проводят методом жеребьевки или по таблице случайных чисел. Для жеребьевки необходимо подготовить достаточное количество жребиев – фишек, шаров, карточек, соответствующее объему генеральной совокупности. Каждый жребий должен содержать информацию об отдельной единице совокупности – номер, фамилию лица или адрес, название или какой-либо другой отличительный признак. Необходимое в соответствии с установленным процентом отбора количество жребиев извлекается из общей их совокупности в случайном порядке.