Многоступенчатая выборка предполагает извлечение из генеральной совокупности сначала укрупненных групп единиц, затем групп, меньших по объему, и так до тех пор, пока не будут отобраны те группы (серии) или отдельные единицы, которые будут подвергнуты наблюдению. Выборка может быть двухступенчатой, когда генеральная совокупность разбивается на группы и производится отбор групп, а затем внутри групп – отбор единиц наблюдения. На обеих ступенях отбор может вестись в случайном порядке. В этом случае ошибка рассчитывается следующим образом:
(1.8.12)В отличие от типического отбора, где отбор производится из всех без исключения групп, при многоступенчатом отборе производится отбор самих групп, и, следовательно, не все они попадают в выборку.
Число ступеней отбора может быть и более трех. Если число ступеней отбора больше двух, то средняя ошибка выборки определяется по формуле:
(1.8.13)где
, , - средние ошибки выборки на отдельных ступенях отбора;- численность выборок на соответствующих ступенях.
Многофазная выборка отличается от многоступенчатой тем, что на каждой стадии сохраняется одна и та же единица отбора, но изменяется программа наблюдения. Причем расширенная программа обязательно содержит вопросы краткой программы, что делает возможным проверить репрезентативность выборки. Расчет ошибки многофазной выборки производится для каждой фазы в отдельности.
1.8.3 Определение необходимого объема выборки
В практике проектирования выборочного наблюдения возникает вопрос о необходимой численности выборки, которая необходима для обеспечения определенной точности расчета генеральных характеристик – средней и доли. Эта численность может быть определена на базе допустимой ошибки при выборочном наблюдении, исходя из вероятности, на основе которой можно гарантировать величину устанавливаемой ошибки, и, наконец, на базе способа отбора.
Формулы необходимого объема выборки для различных способов формирования выборочной совокупности могут быть выведены из соответствующих соотношений, используемых при расчете предельных ошибок выборки.
При случайном повторном отборе численность выборки определяется по формуле:
(1.8.14)
При случайном бесповторном и механическом отборе численность выборки вычисляется по формуле:
(1.8.15)
Для типической выборки:
- повторный отбор (1.8.16);
- бесповторный отбор (1.8.17)
Для серийной выборки:
- повторный отбор (1.8.18);
- бесповторный отбор (1.8.19)
При этом в зависимости от целей исследования дисперсии и ошибки выборки могут быть рассчитаны для средней величины или доли признака.
Основные вопросы, решаемые при расчете численности выборки:
1)необходимо принять решение о размере допустимой погрешности;
2)коэффициент кратности t определяется согласно принятой вероятности результата исследований;
3)в приведенных формулах вместо фактических значений дисперсии и доли используются приблизительные значения, полученные на основе ранее проводимых исследований, либо на основе пробных выборок.
4)если планируется выборка для исследования доли альтернативного признака, то в формулы подставляется максимально возможное значение дисперсии;
5)расчет численности выборки производится несколько раз, исходя из требований точности для всех изучаемых признаков. В качестве окончательного решения выбирается наибольшее из полученных значений;
6)если полученные значения n различаются в 6, 7 и более раз, то выборка организуется как многоступенчатая;
7)если объем генеральной совокупности достаточно велик (более 100 тыс.), то используются формулы для повторного отбора независимо от типа планируемой выборки.
9 Статистические методы изучения взаимосвязей
социально-экономических явлений
1.9.1 Причинность, регрессия, корреляция
Исследование объективно существующих зависимостей и взаимосвязей между явлениями и процессами - важнейшая задача теории статистики, которая играет в экономике значительную роль и позволяет глубже понять сложный механизм причинно-следственных отношений между явлениями. Причинно-следственные отношения - это такая связь явлений и процессов, когда изменение одного из них - причины ведет к изменению другого - следствия.
Все социально-экономические явления взаимосвязаны и представляют собой результат одновременного воздействия большого числа причин. Следовательно, при изучении этих явлений необходимо выявлять главные, основные причины, абстрагируясь от второстепенных.
Признаки по их значению для изучения взаимосвязи делятся на два класса. Признаки, характеризующие причины и условия связи, называются факторными (х), а признаки, которые характеризуют следствия связи, – результативными (у).
Между признаками х и у возникают разные по природе и характеру связи, а именно: функциональные и стохастические. При функциональной связи каждому значению признака х соответствует одно определенное значение у. Эта связь проявляется однозначно в каждом отдельном случае. При стохастической связи каждому значению признака х соответствует определенное множество значений у, образующих так называемое условное распределение. Как закон эта связь проявляется только в массе случаев и характеризуется изменением условных распределений у. Если заменить условное распределение средней величиной
, то образуется разновидность стохастической связи – корреляционная. В случае корреляционной связи каждому значению признака х соответствует среднее значение результативного признака .Связи между явлениями и их признаками классифицируются:
- по степени тесноты;
- по направлению;
- по аналитическому выражению.
По степени тесноты связи представлены в таблице 1.9.1.
По направлению выделяют:
- Прямую связь - это такая связь, при которой с увеличением или с уменьшением значений факторного признака происходит увеличение или уменьшение значений результативного. Так, например, рост производительности труда способствует увеличению уровня рентабельности производства.
- Обратную связь – это такая связь, при которой значения результативного признака изменяются под воздействием факторного, но в противоположном направлении по сравнению с изменением факторного признака. Так с увеличением уровня фондоотдачи снижается себестоимость единицы производимой продукции.
Таблица 1.9.1
Количественные критерии оценки тесноты связи
Величина коэффициента корреляции | Характер связи |
до ±0,3 | практически отсутствует |
±0,3 - ±0,5 | слабая |
±0,5 - ±0,7 | умеренная |
±0,7 - ±1,0 | сильная |
По аналитическому выражению выделяют связи:
- прямолинейные (или просто линейные);
- нелинейные.
Если статистическая связь между явлениями может быть приблизительно выражена уравнением прямой линии, то ее называют линейной связью вида:
(1.9.1)
Если же связь может быть выражена уравнением какой-либо кривой линии, например, параболы, то такую связь называют нелинейной или криволинейной:
(1.9.2)
Для выявления наличия связи, ее характера и направления в статистике используются методы:
- приведения параллельных данных;
- аналитических группировок;
- графический;
- корреляции.
Метод приведения параллельных данных основан на сопоставлении двух или нескольких рядов статистических величин. Такое сопоставление позволяет установить наличие связи и получить представление о ее характере. Сравним изменение двух величин:
X | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Y | 5 | 9 | 6 | 10 | 14 | 17 | 15 | 20 | 23 |
Мы видим, что с увеличением величины X величина Y также возрастает. Можно сделать предположение, что связь между ними прямая и что ее можно описать или уравнением прямой или уравнением параболы второго порядка.