Смекни!
smekni.com

7.Статистическое изучение вариации социально-экономических явлений (стр. 6 из 12)

При построении модели регрессии возможна проблема мультиколлинеарности, под которой понимается тесная зависимость между факторными признаками, включенными в модель (

> 0,8).

Наличие мультиколлинеарности между признаками приводит к:

- искажению величины параметров модели, которые имеют тенденцию к завышению, чем осложняется процесс определения наиболее существенных факторных признаков;

- изменению смысла экономической интерпретации коэффициентов регрессии.

В качестве причин возникновения мультиколлинеарности между признаками, можно выделить следующие:

- изучаемые факторные признаки являются характеристикой одной и той же стороны явления или процесса. Например: показатели объема производимой продукции и среднегодовой стоимости основных фондов одновременно включать в модель не рекомендуется, так как они оба характеризуют размер предприятия;

- факторные признаки являются составляющими элементами друг друга;

- факторные признаки по экономическому смыслу дублируют друг друга.

Устранение мультиколлинеарности может реализовываться через исключение из корреляционной модели одного или нескольких линейно-связанных факторных признаков или преобразование исходных факторных признаков в новые, укрупненные факторы.

Вопрос о том, какой из факторов следует отбросить, решается на основании качественного и логического анализа изучаемого явления.

Качество уравнения регрессии зависит от степени достоверности и надежности исходных данных и объема совокупности. Исследователь должен стремиться к увеличению числа наблюдений, так как большой объем наблюдений является одной из предпосылок построения адекватных статистических моделей.

Аналитическая форма связи результативного признака от ряда факторных выражается и называется многофакторным (множественным) уравнением регрессии или моделью связи.

Линейное уравнение множественной регрессии имеет вид:

(1.9.7)

где

- теоретические значения результативного признака, полученные в результате подстановки соответствующих значений факторных признаков в уравнение регрессии;

- факторные признаки;

- параметры модели (коэффициенты регрессии).

Параметры уравнения могут быть определены графическим методом, методом наименьших квадратов и так далее.

1.9.4 Собственно-корреляционные параметрические методы изучения связи

Измерение тесноты и направления связи является важной задачей изучения и количественного измерения взаимосвязи социально-экономических явлений. Оценка тесноты связи между признаками предполагает определение меры соответствия вариации результативного признака от одного (при изучении парных зависимостей) или нескольких (множественных) факторных.

Линейный коэффициент корреляции характеризует тесноту и направление связи между двумя коррелируемыми признаками в случае наличия между ними линейной зависимости.

В теории разработаны и на практике применяются различные модификации формулы расчета данного коэффициента:

(1.9.8)

Производя расчет по итоговым значениям исходных переменных, линейный коэффициент корреляции можно вычислить по формуле:

(1.9.9)

Между линейным коэффициентом корреляции и коэффициентом регрессии существует определенная зависимость, выражаемая формулой:

(1.9.10)

где a

- коэффициент регрессии в уравнении связи;

- среднеквадратическое отклонение соответствующего, статистически существенного, факторного признака.

Линейный коэффициент корреляции изменяется в пределах от -1 до 1:

. Знаки коэффициентов регрессии и корреляции совпадают.

При этом интерпретацию выходных значений коэффициента корреляции можно представить в следующей таблице 1.9.3:

Таблица 1.9.3

Оценка линейного коэффициента корреляции

Значение линейного

коэффициента связи

Характер

связи

Интерпретация связи

r = 0

отсутствует

-

0<r<1

прямая

с увеличением x увеличивается y

-1<r<0

обратная

с увеличением x уменьшается y и наоборот

r=1

функциональная

каждому значению факторного признака строго соответствует одно значение результативного признака

Пример. По исходным данным, представленным в таблице 1.9.2, оценим тесноту связи с помощью коэффициента корреляции (см. табл. 1.9.4).

Таблица 1.9.4

Расчетная таблица для определения

коэффициента корреляции

№ п/п

x

y

1

2

3

4

5

6

7

8

9

10

5

4

7

10

1

2

8

12

3

6

10,2

7,5

13,9

12,8

0,6

2,8

13,2

10,1

5,4

12,7

51

30

97,3

128

0,6

5,6

105,6

121,2

16,2

76,2

25

16

49

100

1

4

64

144

9

36

104,04

56,25

193,21

163,84

0,36

7,84

174,24

102,01

29,16

161,29

Сумма

58

89,2

631,7

448

992,24

Средняя

5,8

8,92

63,17

44,8

99,224

1. Используя формулу (1.9.8) получаем:

2. По формуле (1.9.9) значение коэффициента корреляции составило:

Таким образом, результат по всем формулам одинаков и свидетельствует о сильной прямой зависимости между изучаемыми признаками.

В случае наличия нелинейной зависимости между двумя признаками для измерения тесноты связи применяют теоретическое корреляционное отношение:

(1.9.11)

где

- дисперсия выравненных значений результативного признака, то есть рассчитанных по уравнению регрессии;

- дисперсия эмпирических (фактических) значений результативного признака.

Для оценки тесноты связи также рассчитывается коэффициент детерминации:

(1.9.12)

Коэффициент детерминации показывает, какая доля вариации результативного признака объясняется вариацией изучаемого фактора х.

Корреляционное отношение (

) изменяется в пределах от 0 до 1 (
) и анализ степени тесноты связи полностью соответствует линейному коэффициенту корреляции (таблица 1.9.1).

Для измерения тесноты связи при множественной корреляционной зависимости, то есть при исследовании трех и более признаков одновременно, вычисляется множественный и частные коэффициенты корреляции.