Смекни!
smekni.com

Показатели вариации в статистических исследованиях (стр. 2 из 3)

6. Относительные показатели вариации.

Абсолютные измерители вариации (дисперсия, средне квадратическое отклонение) ограниченно пригодны для сравнительного анализа вариаций различных совокупностей.

Для цели сравнительного анализа применяют относительные показатели, коэффициенты вариации. Наиболее распространенной формой коэффициентов вариации является

, он показывает, какой процент от средней арифметической составляет среднее квадратическое отклонение.

Вместо средне квадратического в числителе коэффициента вариации иногда используют среднее линейное отклонение

.

Если среднее линейное отклонение определялось относительно медианы или моды, то соответствующие показатели вариации будут выглядеть

,
.

Коэффициенты вариации определенные по различным основаниям не одинаковы, поэтому, сопоставляя вариации разных совокупностей, нужно использовать коэффициенты вариации, рассчитанные по одной и той же величине.

Коэффициент вариации является так же количественной мерой однородности совокупности. Принято считать, что если

, то совокупность количественно однородна. Чем меньше, тем лучше.

7. Стандартизация данных.

Коэффициенты вариации являются сводными оценками вариаций различных совокупностей. Однако они не позволяют сопоставить между собой значения признака у отдельных или групп единиц разных совокупностей.

Для подобных сравнений прибегают к стандартизации вариантов разных совокупностей по формулам:

, где
,
- это стандартизированные значения вариантов ряда x и y соответственно. В процессе стандартизации мы переходим от измерения вариантов в натуральных или стоимостных единицах к их измерению величинами соответствующих средне квадратических отклонений.

Пример: Стандартизация данных о доходах на одного члена семьи и среднедушевом потреблении мяса.

Доход на

одного

члена семьи,

тыс. руб./год,

Среднедушевое потребление

мяса,

60,7

12,3

-97,5

-25,6

9 506,25

655,36

-1,28

-1,31

84,2

19,1

-74

-18,8

5 476,00

353,44

-0,97

-0,96

112,4

23,1

-45,8

-14,8

2 097,64

219,04

-0,60

-0,76

144,5

35,6

-13,7

-2,3

187,69

5,29

-0,18

-0,12

180,1

49,5

21,9

11,6

479,61

134,56

0,29

0,59

240,9

57,3

82,7

19,4

6 839,29

376,36

1,09

0,99

284,6

68,4

126,4

30,5

15 976,96

930,25

1,66

1,56

1107,4

265,3

40 563,44

2 674,30

При стандартизации сгруппированных данных наряду с масштабированием вариантов ряда величинами соответствующих средне квадратических отклонений частоты этих рядов пересчитываются в частости.

Стандартизацию данных проводят, когда варианты сравниваемых рядов отличаются единицами измерения и порядком.

Стандартизация является важнейшим статистическим промежуточным этапом.

Стандартизация используется так же хорошо в теории выборочного метода.

8. Моменты распределения.

Моменты распределения составляют алгоритмическую основу многих статистических методов. Различают:

- Произвольные (общий случай);

- Начальные;

- Центральные;

- Стандартные (частный случай).

Выделяют:

- Взвешенные;

- Невзвешенные.

Произвольным моментом k-го порядка называется среднее значение k-ой степени отклонения всех вариантов ряда от произвольного постоянного числа.

- для несгруппированных данных;

- для сгруппированных данных.

При этом k принимает целочисленное значение от 1 до 4.

Если А=0, то произвольный момент преобразуется в начальный момент.

- для несгруппированных данных;

при k=1 M1=

при k=2 M2=

- для сгруппированных данных.

Если А=

, произвольный момент преобразуется в центральный момент распределения.

- для несгруппированных данных;

- для сгруппированных данных.

При k=1 M1=0

При k=2 M2=

Стандартные моменты это начальные моменты из стандартных отклонений.

- для несгруппированных данных;

- для сгруппированных данных.

Стандартный момент k-го порядка это отношение центрального момента того же порядка к средне квадратическому отклонению в k-ой степени.

Так же как средняя арифметическая величина и дисперсия, центральные и стандартные моменты обладают рядом свойств, которые по сути ближе всего к свойствам дисперсии.

9. Показатели асимметрии и эксцесса.

При анализе распределений помимо графического изображения характер распределения можно выяснить, рассчитывая такие показатели, как асимметрия и эксцесс.

В качестве показателя асимметрии используют стандартный момент 3-го порядка. Если распределение симметрично относительно средней то показатель асимметрии равен нулю.