Смекни!
smekni.com

Показатели вариации в статистических исследованиях (стр. 1 из 3)

Показатели вариации.

1. Понятие вариации и роль ее изучения в статистических исследованиях.

2. Измерители вариации.

3. Прямой способ расчета показателей вариации.

4. Свойства дисперсии и среднего квадратического отклонения.

5. Упрощенный способ расчета дисперсии и средне квадратического отклонения.

6. Относительные показатели вариации.

7. Стандартизация данных.

8. Моменты распределения.

9. Показатели асимметрии и эксцесса.

10. Средняя арифметическая и дисперсия альтернативного признака.

1. Понятие вариации и роль ее изучения в статистических исследованиях.

Вариация – это колеблемость значений признака у отдельных единиц совокупности.

Наличию вариации обязана своим появлением статистика. Большинство статистических закономерностей проявляется через вариацию. Изучая вариацию значений признака в сочетании с его частотными характеристиками, мы обнаруживаем закономерности распределения (например: население по возрасту, студентов по уровню оценок).

Рассматривая вариацию одного признака параллельно с изменением другого, мы обнаруживаем взаимосвязи между этими признаками или их отсутствие (например: зависимость между торговой площадью и товарооборотом).

Вариации в статистике проявляются двояко, либо через изменения значений признака у отдельных единиц совокупности, либо через наличие или отсутствие изучаемого признака у отдельных единиц совокупности.

Изучение вариации в статистике имеет как самостоятельную цель, так и является промежуточным этапом более сложных статистических исследований.

2. Измерители вариации.

Простейшим показателем вариации является размах колебаний:

.

Достоинство этого показателя простота расчета, возможность использования для оценки вариации однородных совокупностей. Недостаток – неприемлемость для неоднородных совокупностей с редкими выбросами крайних значений признака.

Частично недостатки этого показателя устраняет межквартельный размах:

. Однако, он характеризует вариацию только половины совокупности.

Для учета колеблемости всех значений признака применяют показатели среднего линейного отклонения, дисперсии и средне квадратического отклонения.

Средне линейное отклонение – среднее значение отклонений всех вариантов ряда от средней арифметической (иногда от моды или медианы):

- для несгруппированных данных;

- для сгруппированных данных.

Аналогичным по смыслу среднему линейному отклонению является показатель дисперсии и рассчитываемый на его основе показатель средне квадратического отклонения.

Дисперсия – рассеивание, данный показатель характеризует рассеивание значений признака относительно его средней величины.

- для несгруппированных данных;

- для сгруппированных данных.

Дисперсия – средне квадратическое отклонение всех вариантов ряда от средней арифметической. Если извлечь квадратный корень из дисперсии, получим средне квадратическое отклонение.

- для несгруппированных данных;

- для сгруппированных данных.

Несмотря на логическое сходство, дисперсия является более чувствительной к вариации и, следовательно, чаще применяемый показатель.

3. Прямой способ расчета показателей вариации.

Расчет показателей вариации заработной платы работников завода.

Группы со среднемесячной з/п, руб.

Число раб-в,

До 1500

30

750

22500

1909,09

57272,7

3644628

109338843

1501-3000

75

2250

168750

409,09

30681,8

167355

12551653

3001-4500

45

3750

168750

1090,91

49090,9

1190083

53553719

Свыше 4501

15

5250

78750

2590,91

38863,6

6712810

100692149

Итого

165

438750

175909

276136364

Заработная плата каждого из работников в среднем отклоняется от средне заработной платы на 1066,12 руб.

Средне квадратическое отклонение

заметно больше, чем аналогичный ему по смыслу среднее линейное отклонение.

4. Свойства дисперсии и среднего квадратического отклонения.

Так же как и средняя дисперсия обладает рядом свойств, имеющих важное значение для понимания сущности этого показателя, методологии его расчета и практического использования для разработки более совершенных статистических методов.

Свойства дисперсии и средне квадратическое отклонение:

1) Если все варианты ряда уменьшить или увеличить на постоянное число, то величина дисперсии и средне квадратического отклонения не изменится.

;

2) Если все варианты ряда умножить или разделить на постоянное число, дисперсия соответственно увеличится или уменьшится в квадрат этого числа раз, а средне квадратическое отклонение в это число раз.

;

3) Если частоты ряда уменьшить или увеличить в постоянное число раз, то дисперсия и средне квадратическое отклонение от этого не изменится;

4) Дисперсия равна среднему квадрату вариантов ряда минус квадрат средней арифметической.

;

5) Общая дисперсия равна средней арифметической из частных дисперсий (внутригрупповых дисперсий) плюс дисперсии частных средних (межгрупповые дисперсии). Это свойство называется правилом сложения дисперсий, которое широко применяется в выборочном методе, методе измерений взаимосвязей явлений, а так же дисперсионном анализе.

- общая дисперсия;

- частная дисперсия;

- средняя из частных дисперсий,
- численность соответствующей группы;

- межгрупповая дисперсия;

5. Упрощенный способ расчета дисперсии и средне квадратического отклонения.

Свойства дисперсии используются для упрощения методики ее расчета. В условиях развитой вычислительной техники данный способ имеет, прежде всего, иллюстративный характер и помогает понять сущность этого показателя.

Упрощенный способ расчета дисперсии и средне квадратического отклонения (метод расчета от условного нуля).

Среднемесячная з/п работников, руб.,

750

30

- 1 500

-1

2

-2

2

2 250

75

0

0

5

0

0

3 750

45

1 500

1

3

3

3

5 250

15

3 000

2

1

2

4

Итого

11

3

9

А=2250; k=1500; с=15