Расчет эмпирического коэффициента детерминации
по формуле (9): или 20%Вывод. 2% вариации расходов на продукты питания обусловлено вариацией валового дохода, а 80% – влиянием прочих неучтенных факторов.
Эмпирическое корреляционное отношение
оценивает тесноту связи между факторным и результативным признаками и вычисляется по формуле (14)Значение показателя изменяются в пределах
. Чем ближе значение к 1, тем теснее связь между признаками. Для качественной оценки тесноты связи на основе служит шкала Чэддока (табл. 17):Таблица 17 | |||||
Шкала Чеддока | |||||
h | 0,1 – 0,3 | 0,3 – 0,5 | 0,5 – 0,7 | 0,7 – 0,9 | 0,9 – 0,99 |
Характеристикасилы связи | Слабая | Умеренная | Заметная | Тесная | Весьма тесная |
Расчет эмпирического корреляционного отношения
по формуле (14): или 44%Вывод. Согласно шкале Чэддока связь между расходами на продукты питания и валовым доходом является умеренной.
По результатам выполнения Задания 1 с вероятностью 0,683 необходимо определить ошибку выборки среднего размера валового дохода и границы, в которых он будет находится в генеральной совокупности.
Целью выполнения данного Задания является определение для генеральной совокупности домохозяйств границ, в которых будут находиться величина среднего объема валового дохода.
Применение выборочного метода наблюдения всегда связано с установлением степени достоверности оценок показателей генеральной совокупности, полученных на основе значений показателей выборочной совокупности. Достоверность этих оценок зависит от репрезентативности выборки, т.е. от того, насколько полно и адекватно представлены в выборке статистические свойства генеральной совокупности. Как правило, генеральные и выборочные характеристики не совпадают, а отклоняются на некоторую величину ε, которую называют ошибкой выборки (ошибкой репрезентативности).
Значения признаков единиц, отобранных из генеральной совокупности в выборочную, всегда случайны, поэтому и статистические характеристики выборки случайны, следовательно, и ошибки выборки также случайны. Ввиду этого принято вычислять два вида ошибок - среднюю
и предельную .Средняя ошибка выборки
- это среднее квадратическое отклонение всех возможных значений выборочной средней от генеральной средней, т.е. от своего математического ожидания M[ ].Величина средней ошибки выборки рассчитывается дифференцированно (по различным формулам) в зависимости от вида и способа отбора единиц из генеральной совокупности в выборочную.
Для собственно-случайной и механической выборки с бесповторным способом отбора средняя ошибка
выборочной средней определяется по формуле , (15)где
–общая дисперсия выборочных значений признаков,N – число единиц в генеральной совокупности,
n – число единиц в выборочной совокупности.
Предельная ошибка выборки
определяет границы, в пределах которых будет находиться генеральная средняя: , , (16)где
– выборочная средняя, – генеральная средняя.Границы задают доверительный интервал генеральной средней, т.е. случайную область значений, которая с вероятностью Р гарантированно содержит значение генеральной средней. Эту вероятность Р называют доверительной вероятностью или уровнем надёжности.
В экономических исследованиях чаще всего используются доверительные вероятности Р= 0.954, Р= 0.997, реже Р= 0,683.
В математической статистике доказано, что предельная ошибка выборки Δ кратна средней ошибке µ с коэффициентом кратностиt (называемым также коэффициентом доверия), который зависит от значения доверительной вероятности Р. Для предельной ошибки выборочной средней
это теоретическое положение выражается формулой (17)Значения t вычислены заранее для различных доверительных вероятностей Р и протабулированы (таблицы функции Лапласа Ф). Для наиболее часто используемых уровней надежности Рзначения t задаются следующим образом (табл. 18):
Таблица 18 | ||||||
Доверительная вероятность P | 0,683 | 0,866 | 0,954 | 0,988 | 0,997 | 0,999 |
Значение t | 1,0 | 1,5 | 2,0 | 2,5 | 3,0 | 3,5 |
По условию выборочная совокупность насчитывает 89 домохозяйств, выборка 2% механическая, следовательно, генеральная совокупность включает 4450 домохозяйства. Выборочная средняя
, дисперсия определены в Задании 1 (п. 3). Значения параметров, необходимых для решения задачи, представлены в табл. 19:Таблица 16 | |||||
Р | t | n | N | ||
0,683 | 1 | 89 | 4450 | 173,83 | 3165,97 |
Расчет средней ошибки выборки по формуле (15):
,Расчет предельной ошибки выборки по формуле (17):
Определение по формуле (16) доверительного интервала для генеральной средней:
173,83-5,90
173,83+5,90,167,93 тыс. руб.
179,73 тыс. руб.Вывод. На основании проведенного выборочного обследования домохозяйств региона с вероятностью 0,683 можно утверждать, что для генеральной совокупности домохозяйств средний объем валового дохода находится в пределах от 167,93 тыс. руб. до 179,73 тыс. руб.
Потребление товаров и услуг населением характеризуется следующими данными:
Таблица № 17 | |||
Данные, характеризующие потребление товаров и услуг | |||
Виды товаров и услуг | Стоимость товаров и услуг в 3 квартале в текущих ценах, млн.руб. | Средний индекс 3 квартала к 1 кварталу, % | |
Цен | Объема продаж в сопоставимых ценах | ||
Продовольственные товары | 432 | 110 | 95 |
Непродовольственные товары | 690 | 115 | 80 |
Платные услуги | 252 | 130 | 70 |
ИТОГО | 1374 |
Определить:
1. Общий индекс цен на товары и услуги.
2. Индекс покупательной способности рубля.
3. Общий индекс физического объемы потребления товаров и услуг в сопоставимых ценах.
4. Общий индекс физического объемы потребления товаров и услуг в фактических ценах.