Смекни!
smekni.com

Экономические индексы и их использование в экономическом анализе (стр. 2 из 6)

iz = z1/zo

Он также показывает изменение себестоимости единицы продукции в текущем периоде по сравнению с базисным.

Производительность труда может быть измерена количеством продукции, производимой в единицу времени (v) или затратами рабочего времени на производство единицы продукции (t). Поэтому можно построить:

· Индекс количества продукции, произведенной в единицу времени:

iv = v1/vo=q1/T1 : qo/To

· Индекс затрат времени на производство единицы продукции:

it = t1/to

Для характеристики производительности труда часто используется индивидуальный индекс выработки продукции в стоимостном выражении на одного рабочего:

iw= wi/wo = ∑ pq1/∑T1 : ∑ pqo/∑To

где p – сопоставимые цены на продукцию (обычно цены базисного периода).

Индивидуальный индекс стоимости продукции отражает, во сколько раз изменилась стоимость какого-либо товара в текущем периоде по сравнению с базисным, или сколько процентов составляет рост (снижение) стоимости товара, и определяется по формуле.

Ipq = p1q1/ p0q0

Индивидуальный индекс численности рабочих можно рассчитать следующим образом:

iT= T1/T0

Он показывает, во сколько раз изменилась численность рабочих в текущем периоде по сравнению с базисным или сколько процентов составляет рост (снижение) численности рабочих.

Общие индексы рассчитывают для количественных и качественных показателей. В зависимости от цели исследования и наличия исходных данных используют различные формы построения общих индексов: агрегатную и средневзвешенную.

2.2.1. Агрегатный индекс.

Основной формой общих индексов являются агрегатные индексы.

Достижение в сложных статистических совокупностях сопоставимости разнородных единиц осуществляется введением в индексные отношения специальных сомножителей индексируемых величин. Такие сомножители называются соизмерителями. Они необходимы для перехода от натуральных измерителей разнородных единиц статистической совокупности к однородным показателям. При этом в числителе и знаменателе общего индекса изменяется лишь значение индексируемой величины, а их соизмерители являются постоянными величинами.

В качестве соизмерителей индексируемых величин выступают тесно связанные с ними экономические показатели: цены, количество и др.

Произведение каждой индексируемой величины на соизмеритель образует в индексном отношении определённые экономические категории.

Пример.

Товар Ед.изм. Iпериод IIпериод Индивидуальные индексы
цена за единицутовара, руб.
кол-во
цена за единицу товара, руб.
кол-во,
цен
физич-го объёма
А т 20 7 500 25 9500 1,25 1,27
Б м 30 2 000 30 2500 1,0 1,25
В шт. 15 1 000 10 1500 0,67 1,5

При определении по данным таблицы статистических индексов первый период принимается за базисный, в котором цена единицы товара принимается

, а количество —
.

Второй период принимается за текущий (или отчетный), в котором цена единицы товара обозначается

, а количество —
.

Индивидуальные индексы показывают, что в текущем периоде по сравнению с базисным цена на товар А повысилась на 25%, на товар Б осталась без изменения, а на товар В снизилась на 33%. Количество реализации товара А возросло на 27%, товара Б — на 25%, а товара В — на 50%.

При определении общего индекса цен в агрегатной форме

в качестве соизмерителя индексируемых величин
и
могут приниматься данные о количестве реализации товаров в текущем периоде
. При умножении
на индексируемые величины в числителе индексного отношения образуется значение
,

сумма стоимости продажи товаров в текущем периоде по ценам того же текущего периода. В знаменателе индексного отношения образуется значение

, т.е. сумма стоимости продажи товаров в текущем периоде по ценам базисного периода.

Агрегатная формула такого общего индекса цен имеет следующий вид:

=
(1)

Расчёт агрегатного индекса цен по данной формуле предложил немецкий экономист Г. Пааше, поэтому он называется индексом Пааше.

Применяем формулу для расчёта агрегатного индекса цен по данным табл.1:

числитель индексного отношения

=25 * 9 500 + 30 * 2 500 + 10 * 1 500 = 327 500 руб.

знаменатель индексного отношения

= 20 * 9 500 + 30 * 2 500 + 15 * 1 500 = 287 500 руб.

Полученные значения подставляем в формулу 1:

=
или 113,9%

Применение формулы 1 показывает, что по данному ассортименту товаров в целом цены повысились в среднем на 13,9%.

При другом способе определения агрегатного индекса цен в качестве соизмерителя индексируемых величин

и
могут применяться данные о количестве реализации товаров в базисном периоде
. При этом умножение
на индексируемые величины в числителе индексного отношения образует значение
, т.е. сумму стоимости продажи товаров в базисном периоде по ценам текущего периода.

В знаменателе индексного отношения образуется значение

, т.е. сумма стоимости продажи товаров в базисном периоде по ценам того же базисного периода.

Агрегатная формула такого общего индекса имеет вид:

=
(2)

Расчёт общего индекса цен по данной формуле предложил немецкий экономист Э. Ласпейрес, и получил название индекса Ласпейреса.

Применяем формулу для расчёта агрегатного индекса цен по данным табл.1:

числитель индексного отношения

= 25 * 7 500 + 30 * 2 000 + 10 * 1000 = 257 500 руб.

знаменатель индексного отношения

= 20 * 7 500 + 30 * 2 000 + 15 * 1 000 = 225 000 руб.

Полученные значения подставляем в формулу 2:

=
или 114,4%

Применение формулы 2 показывает, что по данному ассортименту товаров в целом цены повысились в среднем на 14,4%.

Таким образом, выполненные по формулам 1 и 2 расчёты имеют разные показания индексов цен. Это объясняется тем, что индексы Пааше и Ласпейреса характеризуют различные качественные особенности изменения цен.

Индекс Пааше характеризует влияние изменения цен на стоимость товаров, реализованных в отчётном периоде. Индекс Ласпейреса показывает влияние изменения цен на стоимость количества товаров, реализованных в базисном периоде.

Другим важным видом общих индексов, которые широко применяются в статистике, являются агрегатные индексы физического объёма товарной массы.

При определении агрегатного индекса физического объёма товарной массы

в качестве соизмерителей индексируемых величин
и
могут применяться неизменные цены базисного периода
. При умножении
на индексируемые величины в числителе индексного отношения образуются значение
, т.е. сумма стоимости товарной массы текущего периода в базисных ценах. В знаменателе —
, т.е. сумма стоимости товарной массы базисного периода в ценах того же базисного периода.