Погрешность регрессионной модели выражается в процентах и рассчитывается как величина
В адекватных моделях погрешность не должна превышать 12%-15%.
Значение
Вывод:
Погрешность линейной регрессионной модели составляет
Задача 6. Дать экономическую интерпретацию:
1) коэффициента регрессии а1;
3) остаточных величин
2) коэффициента эластичности КЭ;
6.1. Экономическая интерпретация коэффициента регрессии а1
В случае линейного уравнения регрессии
Вывод:
Коэффициент регрессии а1 =1,09 показывает, что при увеличении факторного признака Среднегодовая стоимость основных производственных фондов на 1 млн руб. значение результативного признака Выпуск продукции увеличивается в среднем на 1,09 млн. руб.
6.2. Экономическая интерпретация коэффициента эластичности.
С целью расширения возможностей экономического анализа явления используется коэффициент эластичности
Средние значения
Расчет коэффициента эластичности:
Вывод:
Значение коэффициента эластичности Кэ=1,17 показывает, что при увеличении факторного признака Среднегодовая стоимость основных производственных фондов на 1% значение результативного признака Выпуск продукции увеличивается в среднем на 1,17 %.
6.3. Экономическая интерпретация остаточных величин εi
Каждый их остатков
Анализируя остатки, можно сделать ряд практических выводов, касающихся выпуска продукции на рассматриваемых предприятиях отрасли.
Значения остатков
Экономический интерес представляют наибольшие расхождения между фактическим объемом выпускаемой продукции yi и ожидаемым усредненным объемом
Вывод:
Согласно таблице остатков максимальное превышение ожидаемого среднего объема выпускаемой продукции
Задача 7. Нахождение наиболее адекватного нелинейного уравнения регрессии с помощью средств инструмента Мастер диаграмм.
Уравнения регрессии и их графики построены для 3-х видов нелинейной зависимости между признаками и представлены на диаграмме 2.1 Рабочего файла.
Уравнения регрессии и соответствующие им индексы детерминации R2 приведены в табл.2.10 (при заполнении данной таблицы коэффициенты уравнений необходимо указывать не в компьютерном формате, а в общепринятой десятичной форме чисел).
Вид уравнения | Уравнение регрессии | Индекс детерминации R2 |
Полином 2-го порядка | | 0,835 |
Полином 3-го порядка | | 0,8381 |
Степенная функция | | 0,8371 |
Выбор наиболее адекватного уравнения регрессии определяется максимальным значением индекса детерминации R2: чем ближе значение R2 к единице, тем более точно регрессионная модель соответствует фактическим данным.
Вывод:
Максимальное значение индекса детерминации R2 =0,8381.Следовательно, наиболее адекватное исходным данным нелинейное уравнение регрессии имеет вид
ПРИЛОЖЕНИЕ
Результативные таблицы и графики
Исходные данные | ||
Номер предприятия | Среднегодовая стоимость основных производственных фондов, млн.руб. | Выпуск продукции, млн. руб. |
1 | 3608,00 | 3450,50 |
2 | 4244,50 | 3785,50 |
3 | 4378,50 | 4221,00 |
4 | 4613,00 | 4690,00 |
5 | 3005,00 | 2345,00 |
6 | 4847,50 | 4020,00 |
7 | 4981,50 | 5427,00 |
8 | 3742,00 | 3685,00 |
9 | 4579,50 | 4321,50 |
10 | 5283,00 | 5393,50 |
12 | 5785,50 | 5695,00 |
13 | 4412,00 | 4489,00 |
14 | 4847,50 | 4891,00 |
15 | 5551,00 | 5929,50 |
16 | 6355,00 | 6365,00 |
17 | 4747,00 | 4288,00 |
18 | 5249,50 | 5092,00 |
19 | 4177,50 | 3182,50 |
20 | 5316,50 | 4355,00 |
21 | 5919,50 | 5862,50 |
22 | 4077,00 | 3316,50 |
23 | 3239,50 | 3115,50 |
24 | 5417,00 | 4991,50 |
25 | 4847,50 | 4355,00 |
26 | 4512,50 | 4120,50 |
27 | 3507,50 | 2680,00 |
28 | 4713,50 | 4187,50 |
29 | 5450,50 | 4589,50 |
31 | 5182,50 | 4355,00 |
32 | 3809,00 | 3886,00 |
Таблица 2.2 | ||||||
Зависимость выпуска продукции от среднегодовой стоимости основных фондов | ||||||
Номер группы | Группы предприятий по стоимости основеных фондов | Число предприятий | Выпуск продукции | |||
Всего | В среднем на одно предприятие | |||||
1 | 3005-3675 | 4 | 16147,00 | 4036,75 | ||
2 | 3675-4345 | 5 | 19798,50 | 3959,70 | ||
3 | 4345-5015 | 11 | 55543,00 | 5049,36 | ||
4 | 5015-5685 | 7 | 26766,50 | 3823,79 | ||
5 | 5685-6355 | 3 | 12830,50 | 4276,83 | ||
Итого | 30 | 131085,50 | 4369,52 |
Таблица 2.3 | |||
Показатели внутригрупповой вариации | |||
Номер группы | Группы предприятий по стоимости основеных фондов | Число предприятий | Внутригрупповая дисперсия |
1 | 3005-3675 | 4 | 216874,81 |
2 | 3675-4345 | 5 | 994044,16 |
3 | 4345-5015 | 11 | 780900,50 |
4 | 5015-5685 | 7 | 561903,70 |
5 | 5685-6355 | 3 | 85540,39 |
Итого | 30 |
Таблица 2.4 | |||
Показатели дисперсии и эмпирического корреляционного отношения | |||
Общая дисперсия | Средняя из внутригрупповых дисперсия | Межгрупповая дисперсия | Эмпирическое корреляционное отношение |
903163,1081 | 620585,7564 | 282577,3517 | 0,559352496 |
Выходные таблицы | ||||
ВЫВОД ИТОГОВ | ||||
Регрессионная статистика | ||||
Множественный R | 0,91318826 | |||
R-квадрат | 0,833912798 | |||
Нормированный R-квадрат | 0,827981112 | |||
Стандартная ошибка | 400,8969854 | |||
Наблюдения | 30 |
Дисперсионный анализ | |||||
df | SS | MS | F | Значимость F | |
Регрессия | 1 | 22594778,24 | 22594778,24 | 140,5861384 | 1,97601E-12 |
Остаток | 28 | 4500115,002 | 160718,3929 | ||
Итого | 29 | 27094893,24 |
Коэффициенты | Стандартная ошибка | t-статистика | P-Значение | Нижние 95% | |
Y-пересечение | -728,6655802 | 436,1611477 | -1,670633856 | 0,10593656 | -1622,101178 |
Переменная X 1 | 1,089355181 | 0,09187519 | 11,85690257 | 1,97601E-12 | 0,901157387 |
Верхние 95% | Нижние 68,3% | Верхние 68,3% | |
Y-пересечение | 164,7700179 | -1173,045872 | -284,2852881 |
Переменная X 1 | 1,277552975 | 0,995748668 | 1,182961694 |
ВЫВОД ОСТАТКА | ||
Наблюдение | Предсказанное Y | Остатки |
1 | 3201,727913 | 248,7720873 |
2 | 3895,102485 | -109,6024854 |
3 | 4041,07608 | 179,9239204 |
4 | 4296,52987 | 393,4701305 |
5 | 2544,846739 | -199,8467386 |
6 | 4551,983659 | -531,9836595 |
7 | 4697,957254 | 729,0427463 |
8 | 3347,701507 | 337,2984931 |
9 | 4260,036471 | 61,46352902 |
10 | 5026,397841 | 367,1021592 |
11 | 5573,798819 | 121,2011808 |
12 | 4077,569478 | 411,4305218 |
13 | 4551,983659 | 339,0163405 |
14 | 5318,345029 | 611,1549707 |
15 | 6194,186595 | 170,8134052 |
16 | 4442,503464 | -154,5034638 |
17 | 4989,904442 | 102,0955578 |
18 | 3822,115688 | -639,6156882 |
19 | 5062,891239 | -707,8912393 |
20 | 5719,772413 | 142,7275865 |
21 | 3712,635493 | -396,1354926 |
22 | 2800,300529 | 315,1994715 |
23 | 5172,371435 | -180,871435 |
24 | 4551,983659 | -196,9836595 |
25 | 4187,049674 | -66,54967386 |
26 | 3092,247717 | -412,247717 |
27 | 4406,010065 | -218,5100652 |
28 | 5208,864834 | -619,3648336 |
29 | 4916,917645 | -561,9176451 |
30 | 3420,688304 | 465,3116959 |
Рис. 1