ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ
КАФЕДРА СТАТИСТИКИ
О Т Ч Е Т
о результатах выполнения
компьютерной лабораторной работы
Автоматизированный корреляционно-регрессионный анализ взаимосвязи статистических данных в среде MS Excel
Вариант № 65
Выполнил: ст. III курса гр. 3
Широких Е.Б.
Проверил: доц. Левчегов О.Н.
Липецк 2011 г.
Корреляционно-регрессионный анализ взаимосвязи признаков является составной частью проводимого статистического исследования деятельности 30-ти предприятий и частично использует результаты ЛР-1.
В ЛР-2 изучается взаимосвязь между факторным признаком Среднегодовая стоимость основных производственных фондов (признак Х) и результативным признаком Выпуск продукции (признак Y), значениями которых являются исходные данные ЛР-1 после исключения из них аномальных наблюдений.
Исходные данные | ||
Номер предприятия | Среднегодовая стоимость основных производственных фондов, млн.руб. | Выпуск продукции, млн. руб. |
5 | 1205,00 | 945,00 |
23 | 1299,50 | 1255,50 |
27 | 1407,50 | 1080,00 |
1 | 1448,00 | 1390,50 |
8 | 1502,00 | 1485,00 |
32 | 1529,00 | 1566,00 |
22 | 1637,00 | 1336,50 |
19 | 1677,50 | 1282,50 |
2 | 1704,50 | 1525,50 |
3 | 1758,50 | 1701,00 |
13 | 1772,00 | 1809,00 |
26 | 1812,50 | 1660,50 |
9 | 1839,50 | 1741,50 |
4 | 1853,00 | 1890,00 |
28 | 1893,50 | 1687,50 |
17 | 1907,00 | 1728,00 |
6 | 1947,50 | 1620,00 |
14 | 1947,50 | 1971,00 |
25 | 1947,50 | 1755,00 |
7 | 2001,50 | 2187,00 |
31 | 2082,50 | 1755,00 |
18 | 2109,50 | 2052,00 |
10 | 2123,00 | 2173,50 |
20 | 2136,50 | 1755,00 |
24 | 2177,00 | 2011,50 |
29 | 2190,50 | 1849,50 |
15 | 2231,00 | 2389,50 |
12 | 2325,50 | 2295,00 |
21 | 2379,50 | 2362,50 |
16 | 2555,00 | 2565,00 |
В процессе статистического исследования необходимо решить ряд задач.
1. Установить наличие статистической связи между факторным признаком Х и результативным признаком Y графическим методом.
2. Установить наличие корреляционной связи между признаками Х и Yметодом аналитической группировки.
3. Оценить тесноту связи признаков Х и Y на основе эмпирического корреляционного отношения η.
4. Построить однофакторную линейную регрессионную модель связи признаков Х и Y, используя инструмент Регрессия надстройки Пакет анализа, и оценить тесноту связи признаков Х и Y на основе линейного коэффициента корреляции r.
5. Определить адекватность и практическую пригодность построенной линейной регрессионной модели, оценив:
а) значимость и доверительные интервалы коэффициентов а0, а1;
б) индекс детерминации R2 и его значимость;
в) точность регрессионной модели.
6. Дать экономическую интерпретацию:
а) коэффициента регрессии а1;
б) коэффициента эластичности КЭ;
в) остаточных величин εi.
7. Найти наиболее адекватное нелинейное уравнение регрессии с помощью средств инструмента Мастер диаграмм.
2. Выводы по результатам выполнения лабораторной работы
Задача 1. Установление наличия статистической связи между факторным признаком Х и результативным признаком Y графическим методом.
Статистическая связь является разновидностью стохастической (случайной) связи, при которой с изменением факторного признака X закономерным образом изменяется какой–либо из обобщающих статистических показателей распределения результативного признака Y.
Вывод:
Точечный график связи признаков (диаграмма рассеяния, полученная в ЛР-1 после удаления аномальных наблюдений) позволяет сделать вывод, что имеет место статистическая связь. Предположительный вид связи – линейная прямая.
Задача 2. Установление наличия корреляционной связи между признаками Х и Y методом аналитической группировки.
Корреляционная связь – важнейший частный случай стохастической статистической связи, когда под воздействием вариации факторного признака Х закономерно изменяются от группы к группе средние групповые значения
результативного признака Y (усредняются результативные значения , полученные под воздействием фактора ). Для выявления наличия корреляционной связи используется метод аналитической группировки.Вывод:
Результаты выполнения аналитической группировки предприятий по факторному признаку Среднегодовая стоимость основных производственных фондов даны в табл. 2.2 Рабочего файла, которая показывает, что с увеличением значений факторного признака Х закономерно увеличиваются средние групповые значения результативного признака
. Следовательно, между признаками Х и Y существует корреляционная связь.Задача 3. Оценка тесноты связи признаков Х и Y на основе эмпирического корреляционного отношения.
Для анализа тесноты связи между факторным и результативным признаками рассчитывается показатель η – эмпирическое корреляционное отношение, задаваемое формулой
,где
и - соответственно межгрупповая и общая дисперсии результативного признака Y - Выпуск продукции (индекс х дисперсии означает, что оценивается мера влияния признака Х на Y).Для качественной оценки тесноты связи на основе показателя эмпирического корреляционного отношения служит шкала Чэддока:
Значение η | 0,1 – 0,3 | 0,3 – 0,5 | 0,5 – 0,7 | 0,7 – 0,9 | 0,9 – 0,99 |
Сила связи | Слабая | Умеренная | Заметная | Тесная | Весьма тесная |
Результаты выполненных расчетов представлены в табл. 2.4 Рабочего файла.
Вывод:
Значение коэффициента η =0,56, что в соответствии с оценочнойшкалой Чэддока говорит о заметнойстепени связи изучаемых признаков.
Задача 4. Построение однофакторной линейной регрессионной модели связи изучаемых признаков с помощью инструмента Регрессия надстройки Пакет анализа и оценка тесноты связи на основе линейного коэффициента корреляции r.
4.1. Построение регрессионной модели заключается в нахождении аналитического выражения связи между факторным признаком X и результативным признаком Y.
Инструмент Регрессия на основе исходных данных (xi, yi),производит расчет параметров а0 и а1 уравнения однофакторной линейной регрессии
, а также вычисление ряда показателей, необходимых для проверки адекватности построенного уравнения исходным (фактическим) данным.Примечание.В результате работы инструмента Регрессия получены четыре результативные таблицы (начиная с заданной ячейки А75). Эти таблицы выводятся в Рабочий файл без нумерации, поэтому необходимо присвоить им номера табл.2.5 – табл.2.8 в соответствии с их порядком.
Вывод:
Рассчитанные в табл.2.7 (ячейки В91 и В92) коэффициенты а0 и а1 позволяют построить линейную регрессионную модель связи изучаемых признаков в виде уравнения
-728,665+1,089х.4.2. В случае линейности функции связи для оценки тесноты связи признаков X и Y, устанавливаемой по построенной модели, используется линейный коэффициент корреляции r.
Значение коэффициента корреляции r приводится в табл.2.5 в ячейке В78 (термин "Множественный R").
Вывод:
Значение коэффициента корреляции r =0,913 , что в соответствии с оценочной шкалой Чэддока говорит о весьма тесной степени связи изучаемых признаков.
Задача 5. Анализ адекватности и практической пригодности построенной линейной регрессионной модели.
Анализ адекватности регрессионной модели преследует цель оценить, насколько построенная теоретическая модель взаимосвязи признаков отражает фактическую зависимость между этими признаками, и тем самым оценить практическую пригодность синтезированной модели связи.
Оценка соответствия построенной регрессионной модели исходным (фактическим) значениям признаков X и Y выполняется в 4 этапа:
1) оценка статистической значимости коэффициентов уравнения а0, а1 и определение их доверительных интервалов для заданного уровня надежности;
2) определение практической пригодности построенной модели на основе оценок линейного коэффициента корреляции r и индекса детерминации R2;
3) проверка значимости уравнения регрессии в целом по F-критерию Фишера;
4) оценка погрешности регрессионной модели.