Смекни!
smekni.com

Социальная статистика 3 (стр. 3 из 21)

.

Этот показатель отражает то среднее изменение удельного веса (в процентных пунктах), которое имело место за рассматриваемый временной интервал в целом по всем структурным частям совокупности.

Также применяют квадратический коэффициент «абсолютных» структурных сдвигов, который рассчитывается по формуле:

.

Линейный и квадратический коэффициенты «абсолютных» структурных сдвигов позволяют получить сводную оценку скорости изменения удельных весов отдельных частей совокупности. Для сводной характеристики интенсивности изменения удельных весов используется квадратический коэффициент относительных структурных сдвигов:

.

Данный показатель отражает тот средний относительный прирост удельного веса (в процентах), который наблюдался за рассматриваемый период.

Для сводной оценки структурных изменений в исследуемой совокупности в целом за рассматриваемый временной интервал, охватывающий несколько недель, месяцев, кварталов или лет, наиболее удобным является линейный коэффициент «абсолютных» структурных сдвигов за n периодов:

.

Этот показатель используется как для сравнения динамики двух и более структур, так и для анализа динамики одной и той же структуры за разные по продолжительности периоды времени.

Показатели концентрации и централизации. Одна из задач статистического анализа структуры заключается в определении степени концентрации изучаемого признака по единицам совокупности или в оценке неравномерности его распределения. Такая неравномерность может иметь место в распределении доходов по группам населения, жилой площади по группам семей и т.д. При исследовании неравномерности распределения изучаемого признака по территории понятие «концентрация» обычно заменяется понятием «локализация».

Оценка степени концентрации наиболее часто осуществляется по кривой концентрации Лоренца и рассчитываемым на ее основе характеристикам. Для построения кривой концентрации необходимо иметь частотное распределение единиц исследуемой совокупности и соответствующее ему частотное распределение изучаемого признака. При этом для удобства вычислений, как правило, разбиваются на равные группы – 10 групп по 10% единиц в каждой, 5 групп по 20% и т.д.

Наиболее известным показателем концентрации является коэффициент Джини, обычно используемый как мера дифференциации или социального расслоения:

;

где dxi – доля i-й группы в общем объеме совокупности;

dуi – доля i-й группы в общем объеме признака;

dНуi – накопленная доля i-й группы в общем объеме признака.

Если доли выражены в процентах, данную формулу можно преобразовать:

для 10%-ного распределения –

;

для 20%-ного распределения -

.

Чем ближе к 1 (100%) значение данного показателя, тем выше уровень концентрации; при нуле мы имеем равномерное распределение признака по всем единицам совокупности.

Оценка степени концентрации также может быть получена на основе коэффициента Лоренца:

.

При использовании данного коэффициента можно оперировать как долями единицы, так и процентами. Коэффициент Лоренца изменяется в тех же границах, что и коэффициент Джини.

Если под концентрацией понимается степень неравномерности распределения изучаемого признака, не связанная ни с объемом совокупности, ни с численностью отдельных групп, то централизация означает сосредоточение объема признака у отдельных единиц. Обобщающий показатель централизации имеет следующий вид:

,

где mi – значение признака i-й совокупности;

М – объем признака всей совокупности.

Максимальное значение, равное 1, данный коэффициент достигает в том случае, когда вся совокупность состоит только из одной единицы, обладающей всем объемом признака. Минимальное значение коэффициента приближается к нулю, но никогда его не достигает.

Исследуя общество, необходимо считаться со взаимосвязью наблюдаемых процессов и явлений. При этом полнота описания так или иначе определяется количественными характеристиками причинно-следственных связей между ними. Оценка наиболее существенных из них, а также воздействие одних факторов на другие является одной из основных задач статистики.

Количественная оценка связей социальных явлений осуществляется на основе расчета и анализа целого ряда коэффициентов.

Методы оценки тесноты связи подразделяются на корреляционные (параметрические) и непараметрические. Параметрические методы основаны на использовании, как правило, оценок нормального распределения и применяются в случаях, когда изучаемая совокупность состоит из величин, которые подчиняются закону нормального распределения.

Непараметрические методы не накладывают ограничений на закон распределения изучаемых величин. Их преимуществом является и простота вычислений.

Если изучается взаимосвязь двух качественных признаков, то используют комбинационное распределение единиц совокупности в форме так называемых таблиц взаимной сопряженности.

Рассмотрим методику анализа таблиц взаимной сопряженности на конкретном примере социальной мобильности как процесса преодоления замкнутости отдельных социальных и профессиональных групп населения. В таблице 1 приведены данные о распределении выпускников средних школ по сферам занятости с выделением аналогичных общественных групп их родителей.

Таблица 1

Занятия родителей Число детей, занятых в Всего
промыш-ленности сельском хозяйстве сфере обслуживания сфере интеллекту-ального труда
1.промыш-ленность 40 5 7 39 91
2.сельское хозяйство 34 29 13 12 88
3.сфера обслуживания 16 6 15 19 56
4.сфера интеллекту-ального труда 24 5 9 72 110
Всего 114 45 44 142 345

Распределение частот по строкам и столбцам таблицы взаимной сопряженности позволяет выявить основные закономерности социальной мобильности: 42,9% детей родителей группы 1(промышленность) заняты в сфере интеллектуального труда (39 из 91); 38,9% детей, родители которых трудятся в сельском хозяйстве, работают в промышленности (34 из 88) и т.д.

Можно заметить и явную наследственность в передаче профессий. Так, из пришедших в сельское хозяйство 29 человек или 64,4% являются детьми работников сельского хозяйства; более чем у 50% в сфере интеллектуального труда родители относятся к той же социальной группе и т.д.

Однако важно получить обобщающий показатель, характеризующий тесноту связи между признаками и позволяющий сравнивать проявление связи в разных совокупностях. Для этой цели исчисляют, например, коэффициенты взаимной сопряженности Пирсона (С) и Чупрова (К):

;

,

где

- показатель средней квадратичной сопряженности, определяемый путем вычитания единицы из суммы отношений квадратов частот каждой клетки корреляционной таблицы к произведению частот соответствующего столбца и строки:

,
;

К1, К2 – число групп по каждому из признаков.

Величина коэффициента взаимной сопряженности, отражающая тесноту связи между качественными признаками, колеблется в обычных для этих показателей пределах от 0 до 1.

Таблица 2
Занятия родителей Число детей, занятых в
промыш-ленности сельском хозяйстве сфере обслужи-вания сфере интеллекту-ального труда Всего
А 1. 2. 3. 4. 5. 6.
1. промыш-ленность 40

1600

14,04

5

25

0,56

7

49

1,11

39

1521

10,71

91

-

26,42

0,2903
2. сельское хозяйство 34

1156

10,14

29

84118,69

13

169

3,84

12

169

3,84

88

-

33,68

0,3827
3. сфера обслужи-вания 16

256

2,25

6

36

0,8

15

225

5,11

19

361

2,54

56

-

10,7

0,1911
4. сфера интеллек-туального труда 24

576

5,05

5

25

0,56

9

81

1,84

72

5184

36,51

110

-

43,96

0,3996
Итого (fj) 114 45 44 142 345 1,264

Цифры в левом верхнем углу каждой клетки данной таблицы перенесены из предыдущей. Цифры в центре клеток представляют собой результат возведения частот в квадрат (fij2). Путем деления fij2 на итоговые частоты соответствующих столбцов (fj) получаем значения, которые записываем в нижнем правом углу каждой клетки.