Смекни!
smekni.com

Ядро, его строение и химический состав. Функция ядра. Роль ядра в процессе передачи наследственн (стр. 2 из 7)

Таким образом, именно в ядре каждой клетки содержится основная наследственная информация, необходимая для развития целого организма со всем разнообразием его свойств и признаков. Именно ядро играет центральную роль в явлениях наследственности .

Другой группой клеточных процессов, обеспечивающихся активностью ядра, является создание собственно аппарата белкового синтеза. Это не только синтез, транскрипция на молекулах ДНК разных информационных РНК и рибосомных РНК. В ядре эукариотов происходит также образование субъедениц рибосом путем комплексирования синтезированных в ядрышке рибосомных РНК с рибосомными белками, которые синтезируются в цитоплазме и переносятся в ядро.

Таким образом, ядро представляет собой не только вместилище генетического материала, но и место, где этот материал функционирует и воспроизводится. Поэтому выпадение лил нарушение любой из перечисленных выше функций губительно для клетки в целом. Так нарушение репарационных процессов будет приводить к изменению первичной структуры ДНК и автоматически к изменению структуры белков, что непременно скажется на их специфической активности, которая может просто исчезнуть или измениться так, что не будет обеспечивать клеточные функции, в результате чего клетка погибает. Нарушения редупликации ДНК приведут к остановке размножения клеток или к появлению клеток с неполноценным набором генетической информации, что также губительно для клеток. К такому же результату приведет нарушение процессов распределения генетического материала (молекул ДНК) при делении клеток. Выпадение в результате поражения ядра или в случае нарушений каких-либо регуляторных процессов синтеза любой формы РНК автоматически приведет к остановке синтеза белка в клетке или к грубым его нарушениям.

Значение ядра как хранилища генетического материала и его главная роль в определении фенотипических признаков были установлены давно. Немецкий биолог Хаммерлинг одним из первых продемонстрировал важнейшую роль ядра. Он выбрал в качестве объекта своих экспериментов необычайно крупную одноклеточную (или неклеточную) морскую водоросль Acetabularia . Существует два близко родственных вида A. medierranea и A. crenulata , различающихся только по форме УшляпкиФ.

В ряде экспериментов, в том числе таких, в которых УшляпкуФ отделяли от нижней части УстебелькаФ (где находится ядро), Хаммерлинг показал, что для нормального развития шляпки необходимо ядро. В дальнейших экспериментах, в которых соединяли нижнюю часть, содержащую ядро одного вида с лишенным ядра стебельком другого вида, у таких химер всегда развивалась шляпка, типичная для того вида, которому принадлежит ядро.

При оценке этой модели ядерного контроля следует, однако, учитывать примитивность организма, использованного в качестве объекта. Метод пересадок был применен позднее в экспериментах, проведенных в 1952 г. двумя американскими исследователями, Бриггсом и Кингом, с клетками лягушки Rana pipenis . Эти авторы удаляли из неоплодотворенных яйцеклеток ядра и заменяли их ядрами из клеток поздней бластулы, уже проявлявших признаки дифференцировки. Во многих случаях из яиц реципиентов развивались нормальные взрослые лягушки.

2. Опишите строение хлоропластов и метохондрий, видимое под электронным микроскопом. Приведите рисунки.

Хлоропласты – пластиды высших растений, в которых идет процесс фотосинтеза, т. е. использование энергии световых лучей для образования из неорганических веществ (углекислого газа и воды) органических веществ с одновременным выделением в атмосферу кислорода. Хлоропласты имеют форму двояковыпуклой линзы, размер их около 4-6 мкм. Находятся они в паренхимных клетках листьев и других зеленых частей высших растений. Число их в клетке варьирует в пределах 25-50.

Снаружи хлоропласт покрыт оболочкой, состоящей из двух липопротеиновых мембран. Под ней, в основном веществе (строме), упорядоченно расположены многочисленные образования – ламеллы. Они образуют плоские мешочки, которые лежат друг на друге правильными стопками. Эти стопки, напоминающие монеты, сложенные столбиком, называются гранами. Сквозь них проходят более длинные ламеллы, так что все граны хлоропласта связаны в единую систему. В состав мембран, образующих граны, входит зеленый пигмент – хлорофилл. Именно здесь происходят световые реакции фотосинтеза – поглощение хлорофиллом световых лучей и превращение энергии света в энергию возбужденных электронов. Электроны, возбужденные светом, т. е. обладающие избыточной энергией, отдают свою энергию на разложение воды и синтез АТФ. При разложении воды образуются кислород и водород. Кислород выделяется в атмосферу, а водород связывается белком ферредоксином.

Митохондрии выделяют из клеток в виде чистой фракции с помощью гомогенизатора и ультрацентрифуги, как описано в статье. После этого их можно исследовать в электронном микроскопе, используя для этого различные методики, например изготовление срезов или негативный контраст...

Каждая митохондрия окружена оболочкой, состоящей из двух мембран. Наружную мембрану отделяет от внутренней небольшое расстояние — внутримембранное пространство. Внутренняя мембрана образует многочисленные гребневидные складки, так называемые кристы. Кристы существенно увеличивают поверхность внутренней мембраны, обеспечивая место для размещения компонентов дыхательной цепи. Через внутреннюю митохондри-альную мембрану осуществляется активный транспорт АДФ и АТФ. Метод негативного контрастирования, при котором окрашенными оказываются не сами структуры, а пространство вокруг них, позволил выявить присутствие особых «элементарных частиц» на той стороне внутренней митохондриальной мембраны, которая обращена к матриксу. Каждая такая частица состоит из головки, ножки и основания.

Хотя микрофотографии свидетельствуют, казалось бы, о том, что элементарные частицы выступают из мембраны в матрикс, считается, что это артефакт, обусловленный самой процедурой приготовления препарата, и что в действительности они полностью погружены в мембрану. Головки частиц ответственны за синтез АТФ; в них находится фермент АТФаза, обеспечивающий сопряжение фосфорилирования АДФ с реакциями в дыхательной цепи. В основании частиц, заполняя собой всю толщу мембраны, располагаются компоненты самой дыхательной цепи. В митохондриальном матриксе содержится большая часть ферментов, участвующих в цикле Кребса, и протекает окисление жирных кислот. Здесь же находятся митохондриальные ДНК, РНК и 70S-рибосомы.

3. Понятие о растительной ткани. Классификация тканей. Понятие о первичных и вторичных тканей.

В трудах первых анатомов-ботаников М.Мальпиги и Н.Грю (XYII век) были сформулированы первые понятия о тканях как о группах сходных клеток. Слово «ткань» подчеркивало внешнее сходство внутреннего строения растений со структурой льняных и шерстяных тканей. В частности, Н.Грю описывая ткани стебля, писал: «Здесь ясно бросается в глаза наличие вертикальной и горизонтальной систем, сплетение которых дает некоторое подобие кружева». В теле растений он различал плотные и рыхлые ткани: последним он, согласно терминологии Теофраста, дал название «паренхимы». Паренхима, по мнению Грю, «...весьма сходна в строении с пеной пива или с пеной яичного белка, являясь, по-видимому, жидким образованием».

В 1807 году Г.Ф.Линк ввел понятие о паренхиматических и прозенхиматических клетках. Ткани, состоящие из таких клеток, стали называть соответственно паренхимой и прозенхимой.

Ф.Ван-Тигейм (1824) классифицировал ткани на живые и неживые в зависимости от наличия в клетках живого содержимого.

Ю.Саксу (1868) принадлежит первая наиболее детальная классификация, в основе которой лежал функциональный признак. Все ткани он разделил на покровные, пучковые и основные. Идею о физиологическом принципе в применении к изучению строения растения с особой отчетливостью выдвинул Швенденер в 1874 году, но развил ее и всесторонне применил его ученик Г.Габерландт своей работе «Физиологическая анатомия растений» в 1884 году. Его труды являются основой современной классификации тканей по морфолого-физиологическим признакам. Согласно Г.Габерландту: ткани – это устойчивые, т.е. закономерно повторяющиеся комплексы клеток, сходные по происхождению, строению и приспособленные к выполнению одной или нескольких функций.

Различают следующие виды растительных тканей:

• меристематические или образовательные, обеспечивающие рост растений;

• основные - составляют основу тела растений и выполняют различные функции;

• механические, или арматурные,- противодействуют динамическим и статическим нагрузкам;

• проводящие - участвуют в транспорте веществ по растению;

• выделительные – накапливают и выделяют секреторные вещества, выполняющие различные функции.

Кроме анатомо-физиологической классификации существует и онтогенетическая классификация тканей, которая учитывает их происхождение. В этом случае ткани делят на первичные и вторичные.

Классификация растительных тканей основана на единстве выполняемых функций, происхождении, сходстве строения и расположении клеток в органах растения. По этим критериям ткани делят на несколько групп: меристематические или образовательные, покровные, основные, механические, проводящие, выделительные. Образовательные ткани благодаря постоянному митотическому делению их клеток обеспечивают не только рост, но и образование всех тканей растения. Часть дочерних клеток дифференцируется, т.е. превращается в клетки различных тканей. Другие, сохраняя : свои меристематические свойства, продолжают делиться и образуют все новые и новые клетки. Меристемы возникают в зиготе на ранних этапах развития зародыша и являются первичной тканью, из которой состоит весь зародыш. В процессе роста растения меристемы сохраняются в точках роста - апикальные меристемы (верхушка стебля и кончик корня), а также вдоль стебля - боковые меристемы. Верхушечные меристемы обесточивают рост растения в длину, а боковые - в ширину. Существуют еще вставочные меристемы, которые сохраняются в зонах роста (основание черешков листьев и междоузлия). Меристемы, имеющие свое происхождение от меристем зародыша, называют первичными, к ним относятся верхушечные. К вторичным меристемам принадлежат ткани, которые образуются из первичных меристем и клеток других тканей. Это боковые меристемы - камбий, раневые меристемы (камбий обеспечивает рост стебля в ширину, раневые - регенерацию тканей при повреждениях). Покровные ткани находятся в контакте с внешней средой и обеспечивают защиту растений от неблагоприятных воздействий среды: механических повреждений, низких температур, чрезмерного испарения воды, проникновения микроорганизмов и др. Кроме того, покровные ткани осуществляют обмен веществ между организмом и внешней средой. Различают три вида покровных тканей: кожицу, или эпидерму, пробку и корку. Эпидерма состоит из одного слоя плотно прилегающих друг к другу клеток. Ее поверхность покрыта воскоподобным веществом - кутином, образующим кутикулу. Кутикула снижает испарение воды, воск делает поверхность органов несмачиваемой. Эпидерма покрывает листья и молодые побеги растения. Клетки кожицы содержат хлоропласты, Одной из функций эпидермы являются газообмен и транспирация, т.е. испарение воды. Эти процессы обеспечиваются устьицами - отверстиями, окаймленными двумя замыкающими клетками. При изменении осмотического давления внутри клеток щель может расширяться и сужаться, регулируя транспирацию и газообмен. Предполагают существование двух процессов, изменяющих осмотическое состояние вакуолярного сока. На свету происходит гидролиз крахмала в глюкозу, которая повышает осмотическое давление в вакуоли. Считают, что изменение давления регулируется также ионами калия, концентрация которых увеличивается в светлое время суток. У многих высших растений некоторые клетки кожицы образуют выросты, так называемые волоски, имеющие разнообразную форму и выполняющие различные функции. Нитевидные волоски, в большом количестве покрывающие зеленые части растений, ослабляют иссушающее действие ветра и солнца. Жгучие волоски имеют форму шипа, который при прикосновении вонзается в кожу и клеточный сок с раздражающими веществами вспрыскивается в ранку. Существуют также железистые волоски и нектарники, выполняющие секреторную функцию. Пробка образуется на смену эпидерме и покрывает стебли и корни многолетних растений. Образование пробки связано с появлением вторичной меристемы - феллогена. Феллоген образуется под кожицей и располагается в виде кольца; при делении его клетки, откладывающиеся наружу, превращаются в пробку. Пробка состоит из нескольких рядов мертвых плотно сомкнутых клеток, утолщенные стенки которых пропитаны суберином веществом, плохо пропускающим воздух и воду. Благодаря этому пробка предохраняет стволы и ветви от излишней потери воды, резких колебаний температуры и др. Для газообмена и транспирации в пробке имеются чечевички-отверстия, которые прикрыты рыхлой тканью, состоящей из живых, слабо опробковевших клеток. Корка образуется в результате того, что феллоген организует слои пробки, которые могут препятствовать поступлению веществ и воды в клетки паренхимы. Феллоген также захватывает механические ткани и луб. В результате происходит отмирание участков тканей. На поверхности органа образуется корка - комплекс мертвых тканей. Толстые слои корки надежно предохраняют стволы деревьев от разного рода повреждений. Трещины в корке, на дне которых имеются чечевички, обеспечивают газообмен. Механические ткани, подобно арматуре железобетонных конструкций, создают каркас всем тканям и органам растения. Клетки могут располагаться тяжами вдоль осевых органов, сопровождать проводящие пучки и образовывать трехмерные структуры, создающие опору для других тканей. Прочность и упругость клеток механических тканей обусловлены утолщенными и целлюлозными или одревесневевшими оболочками. Наиболее важные механические ткани - лубяные и древесные волокна - хорошо развиты в стебле. В корне механическая ткань сосредоточена в центре органа. Волокна механической ткани сопровождают проводящие пучки. Проводящие ткани обеспечивают транспорт веществ в теле растений. От корней в стебель и листья осуществляется перенос минеральных веществ, всасываемых из почв, - восходящий ток. Он обеспечивается ксилемой, или древесиной. Движение органических веществ, продуктов фотосинтеза к местам их использования или отложения в запас (к корням, плодам, семенам и другим органам) составляет нисходящий ток. Он осуществляется флоэмой, или лубом, располагающимся кнаружи от древесины. Основными элементами ксилемы являются трахеиды и трахеи (сосуды), окруженные древесными волокнами.