Смекни!
smekni.com

Контрольная работа по Статистике 15 (стр. 5 из 6)

Средний темп роста находим по формуле:

Цепные темпы прироста находим по формуле:

Базисные темпы прироста находим по формуле:

Средний темп прироста находим по формуле:

.

Это свидетельствует о ежегодном увеличении жилищного фонда на 1,9%.

4) Абсолютное значение одного процента прироста вычисляем по формуле:

5) Так как абсолютные приросты практически постоянны, то следует применять метод аналитического выравнивания ряда динамики по прямой:

Параметры

и
находим по методу наименьших квадратов из системы уравнений:

Так как

= 0, то система уравнений принимает вид:

Отсюда находим:

Уравнение тренда имеет вид:

. Подставляя в это уравнения значения t, находим выровненные уровни
.

Фактические и выровненные уровни жилищного фонда представлены на графике:

Предполагаемое значение обеспеченности граждан жильем на 2009 г. Вычислим с помощью следующих методов:

1) метод точечного прогноза

Подставим в уравнение тренда значение t в 2009 г., т. е. t=5:

Уровень жилищного фонда на одного жителя к 2009 г. составит 18,71

.

2) метод интервальных оценок

Вероятностные границы интервала прогнозируемой обеспеченности граждан жильем определим по формуле:

, где

Число уровней ряда n=5, а число параметров адекватной модели тренда m=2. Число степеней свободы равно:

По таблице Стьюдента находим коэффициент доверия при доверительной вероятности, равной 0,95,

3,1825.

Рассчитаем средние квадратические отклонения от тренда:

Год

y i

2002

16,4

16,26

0,14

0,0196

2003

16,5

16,61

-0,11

0,0121

2004

16,8

16,96

-0,16

0,0256

2005

17,4

17,31

0,09

0,0081

2006

17,7

17,66

0,04

0,0016

Итого:

84,8

84,8

0

0,067

Найдем

:

Определим вероятностные границы интервала, зная точечную оценку прогнозируемого значения обеспеченности граждан жильем

:

Следовательно, с вероятностью, равной 0,95, можно утверждать, что обеспеченность граждан жильем в 2009 г. составит не менее чем 18,23 м2, но и не более чем 19,19 м2.

Задание 5. Имеются следующие данные:

Товары

Товарооборот магазина в октябре, д.е.

Рост цен в октябре по сравнению с июнем, %

А

Б

В

6500

6100

11900

+5,1

+6,4

+8,3

Определите:

1) общий индекс цен;

2) общий индекс физического объема реализации с учетом того, что товарооборот октября возрос на 14% по сравнению с июнем.

Решение.

Товары

Товарооборот магазина в октябре, д.е.

Рост цен в октябре по сравнению с июнем, %

A

6500

+5,1

1,051

6184,586108

Б

6100

+6,4

1,064

5733,082707

В

11900

+8,3

1,083

10987,99631

Итого:

24500

22905,66512

Индекс цен рассчитаем с учетом того, что в товарообороте участвуют различные товары, с помощью агрегатного индекса цен Пааше:

, где числителем является общий товарооборот магазина в октябре.

Зная, что индивидуальный индекс цен можно рассчитать по формуле:

, то, выразив отсюда
, можем преобразовать формулу индекса цен:

Общий индекс цен равен 106,96%, что означает, что в среднем цены на товары возросли на 6,96%.

2) Общий индекс физического объема реализации продукции найдем из индексной системы:

Так как товарооборот октября возрос на 14% по сравнению с июнем, то есть

, а
, то индекс физического объема реализации продукции равен:

Таким образом, при увеличении товарооборота на 14% в октябре по сравнению с июнем физический объем товарооборота возрос на 6,58%.

Задание 6.

Назовите показатели рядов динамики с постоянной и переменной базой сравнения, поясните методику их расчета.

Решение.

При изучении рядов динамики перед статистикой стоят следую­щие задачи: охарактеризовать интенсивность развития явления от периода к периоду (от даты к дате), а также среднюю интенсив­ность развития за исследуемый период, изучить сезонные колеба­ния, выявить основную тенденцию в развитии явления, осущест­вить прогноз развития на будущее.

Для изучения интенсивности изменения уровней ря­да во времени исчисляются следующие показатели динамики:

  • абсолютные приросты;
  • коэффициенты роста;
  • темпы роста;
  • темпы прироста;
  • абсолютные значения одного процента прироста.

Перечисленные показатели динамики можно исчислять с пе­ременой или постоянной базой. При этом принято называть сравниваемый уровень отчетным, а уровень, с которым производится сравнение, — базисным. Для расчета показателей анализа динамики на постоянной базе каждый уровень ряда сравнивается с одним и тем же ба­зисным уровнем. В качестве базисного выбирается либо началь­ный уровень в ряду динамики, либо уровень, с которого начи­нается какой-то новый этап развития явления. Исчисляемые при этом показатели называются базисными.