Смекни!
smekni.com

Классификация регионов РФ по доходам от услуг связи (стр. 4 из 12)

1й кластер: Белгородская область, Воронежская область, Липецкая область, Тамбовская область, Тульская область, Республика Северная Осетия – Алания, Волгоградская область, Ростовская область, Республика Башкортостан, Республика Мордовия, Удмуртская Республика, Кировская область, Оренбургская область, Пензенская область, Саратовская область, Курганская область, Алтайский край, Кемеровская область.

2й кластер: Брянская область, Владимирская область, Ивановская область, Курская область, Орловская область, Республика Адыгея, Кабардино-Балкарская Республика, Республика Калмыкия, Карачаево-Черкесская Республика, Республика Марий Эл, Чувашская Республика, Республика Алтай, Республика Бурятия, Забайкальский край, Амурская область.

3й кластер: Калужская область, Костромская область, Рязанская область, Смоленская область, Тверская область, Ярославская область, Республика Карелия, Архангельская область, Вологодская область, Калининградская область, Мурманская область, Новгородская область, Псковская область, Астраханская область, Пермский край, Ульяновская область, Челябинская область, Республика Хакасия , Иркутская область.

4й кластер: Республика Коми, Самарская область, Красноярский край, Новосибирская область, Томская область, Республика Саха (Якутия), Приморский край, Хабаровский край, Сахалинская область.

Опираясь на рисунок 2.2.2 и данные, приведенные в сводной таблице k-метода (табл. 2.2.2.) проанализируем каждый из полученных кластеров.

Самыми высокими показателями среднедушевого дохода населения, число квартирных телефонных аппаратов сети общего пользования на 1000 человек, средства связи для оказания услуг передачи данных и телематически служб на 1000 человек, и что вполне логично, доходов от услуг связи населению на одного жителя обладает кластер 4.

В регионах группы 3 наблюдается самое большое число абонентов сотовых терминалов. Также в регионах данной группы наблюдается второй по величине среднедушевые доходы населению. Оставшиеся два показателя находится на среднем уровне.

Что же касается регионов, принадлежащих первой группе, то степень оснащенности населения данных областей и Республик услугами связи, можно охарактеризовать как средний уровень.

Самым же низким уровнем оказываемых услуг связи отличается четвертый кластер. Данному объединению принадлежит и самый низкий среднедушевой доход населения. То есть, люди проживающие на данных территориях, часто просто не могут позволить такую вроде бы простую вещь как мобильный телефон у каждого члена семьи. Совокупность влияния этих факторов также влечет за собой самый низкий из 4 групп доход от услуг связи населению.


Глава 3. Регрессионный анализ.

Регрессионный анализ – это статистический метод исследования зависимости случайной величины Y от переменных Xj (j = 1, 2, ..., k), рассматриваемых в регрессионном анализе как неслучайные величины независимо от истинного закона распределения Xj.[2]

Важной предпосылкой построения регрессионной модели является оценка мультиколлинеарности. Как видно из парных коэффициентов корреляции (табл. 2.1.1), приведенной выше, в наших данных мультиколлинеарности не наблюдается.

Следующим шагом моей курсовой работы является проведение регрессионного анализа по каждому из кластеров. Для начала рассмотрим группу регионов, в которых наименее всего развито оказание услуг связи населению. Это группа под номером 2. Данные этого кластера приведены в таблице 3.1.

Табл. 3.1

X1

X2

X3

X4

X5

Брянская область

-0,59135

-0,65075

-0,46276

-1,02263

-0,57139

Владимирская область

-0,18887

-0,81461

-0,26867

0,236626

-0,7136

Ивановская область

-0,57832

-1,1112

-0,69186

0,539878

-1,10873

Курская область

-0,48639

-1,45368

-0,59409

-0,42401

-0,13617

Орловская область

-0,60528

-0,08706

-0,58023

-0,58957

-0,64392

Республика Адыгея

-1,98988

-1,5012

-0,73783

-3,10493

-1,22581

Кабардино-Балкарская Республика

-0,70313

-1,55363

-0,72542

-1,79469

-1,03397

Республика Калмыкия

-1,48529

-0,57373

-0,88229

-0,22692

-1,96868

Карачаево-Черкесская Республика

-0,60488

-1,1833

-0,83268

-0,49969

-1,00629

Республика Марий Эл

-0,9572

-0,5639

-0,68165

0,080532

-1,27131

Чувашская Республика

-1,11697

-0,60978

-0,34164

0,00853

-1,03238

Республика Алтай

-1,76286

-0,8015

-0,77723

-1,53453

-0,53003

Республика Бурятия

-0,46259

-1,1833

-0,67289

-0,28474

-0,1718

Забайкальский край

0,27592

-2,02064

-0,7422

-1,46779

-0,27583

Амурская область

0,528411

-1,72405

-0,56417

-0,01197

0,03086

Табл. 3.1. Группа регионов №2.

Где:

X1 – доходы от услуг связи населению в расчете на одного жителя (рублей);

Х2 – число квартирных телефонных аппаратов сети общего пользования на 1000 человек населения (на конец года; штук);

Х3 – средства связи (пользовательское оборудование) для оказания услуг передачи данных и телематических служб на 1000 человек (на конец года;штук);

Х4 – число абонентских терминалов сотовой связи на 1000 человек населения (на конец года; штук);

Х5 – среднедушевые доходы населения (рублей).

Далее приведена корреляционная матрица для данных показателей (таблица 3.2.):

Табл 3.2.

X1

X2

X3

X4

X5

X1

1

-0,40043

0,324542

0,437464

0,640113

X2

-0,40043

1

0,256279

0,360102

-0,41142

X3

0,324542

0,256279

1

0,358174

0,321892

X4

0,437464

0,360102

0,358174

1

0,024324

X5

0,640113

-0,41142

0,321892

0,024324

1

Табл. 3.2. Корреляционная матрица для группы регионов 2.

В качестве результативного признака для регрессионного анализа возьмём показатель X1 (доходы от услуг связи населению в расчете на одного жителя), факторными же признаками будут являться все остальные признаки. Данный выбор основан на том, что довольно интересно насколько доход от услуг связи населению в каждой группе зависит от оснащенности населения средствами связи и их среднедушевого дохода.

Теперь проделаем регрессионный анализ с исключением. Все результаты представлены рисунке (Рис.3.1).

Рис. 3.1.

Рис. 3.1. Результаты регрессионного анализа для кластера 2.

Исходя из рисунка 3.1. можно построить следующее уравнение регрессии:

X1=0,114351+0,300196*X4+0,807374*X5

Необходимо проверить значимость уравнения регрессии. Для этого находим наблюдаемое значение статистики F. И получаем, что F=8,5576. Теперь найдем критическое значение статистики F на уровне значимости 0,1, оно равно 2,807. Так как наблюдаемое значение статистики F превосходит его критическое, то на уровне значимости 0,1 можно утверждать, что полученное уравнение регрессии значимое.

Далее необходимо проверить значимость коэффициентов уравнения. С вероятностью 0,1 можно утверждать, что коэффициенты при X4 и Х5 значимы. Коэффициент детерминации составил 58,8%. Следовательно, на долю вариации факторных признаков приходится большая часть по сравнению с остальными неучтенными в модели факторами, влияющими на изменение результативного показателя. А значит данная регрессионная модель имеет высокое практическое значение.