Смекни!
smekni.com

Статистическое изучение динамики социально-экономических явлений (стр. 5 из 5)

При условии, что отклонения уровней от тенденции (так назы­ваемые остатки) случайны, значения D, лежащие в интервале 0 - 4, всегда будут находиться ближе к 2. Если автокорреляция по­ложительная, то D < 2; отрицательная - 2< = D < = 4. Следова­тельно, оценки, получаемые по критерию, являются не точечны­ми, а интервальными. Их значения для трех уровней значимости (α = 0,01, α= 0,025 и α = 0,05) с учетом числа наблюдений даны в специальных таблицах.

Существует ряд способов исключения или уменьшения автокорреляции (авторегрессии) в рядах динамики:

а) метод вклю­чения времени в качестве дополнительного фактора;

б) метод последовательных разностей;

в) метод авторегрессионных преобразований.

Рассмотрим эти способы исключения автокорреляции (авторег­рессии).

В соответствии с теоремой, доказанной Фришем и Boy, время вводится в систему связных динамических рядов в явной форме в качестве дополнительного фактора. Уровни исходных дина­мических рядов могут быть представлены показателями в лю­бой форме, в том числе логарифмической, а время всегда вво­дится в линейной форме. Считается, что введение фактора вре­мени исключает основную тенденцию развития всех явлений, представленных исследуемыми рядами динамики. Доказано, что введение времени аналогично использованию отклонения фак­тических данных от трендов.

Применение метода наименьших квадратов к обработке мно­гомерных временных рядов не отличается от методологии при­менения его к обычным статистическим рядам. В рассматрива­емом случае минимизируется следующее выражение:

S =

min.

При исключении автокорреляции методом последовательных разностей

обработке методом наименьших квадратов подверга­ются не сами уровни исходных рядов уt, yt+1, ..., Уt+n, и хt, хt+1, ..., xt+n, а последовательные разности между ними:

Δy1=yt-yt-1; Δxt=xt-xt-1;

Δy2=yt-1-yt-2;Δx2=xt-1-xt-2;

…………… …………….

…………… …………….

Δyk=yt-k-yt-k-1; Δxk=xt-k-xt-k-1.

При использовании этого метода исходят из того , что все разности между уровнями динамических рядов, начиная с первой, будут содержать только случайную компоненту. При­чем первые разности содержат случайную компоненту в линей­ной форме, вторые - описываемую параболой второго порядка, третьи - показательной функцией.

Метод авторегрессионных преобразований заключается в том, что определяют уравнение связи между отклонениями от тен­денций двух связных рядов динамики:

…………. ………….

………… ………….

В этом случае также получают уравнения регрессии, не иска­женные влиянием автокорреляции.

Введение времени в качестве дополнительной переменной является наиболее действенным способом обработки связных рядов динамики. При линейной связи между исследуемыми рядами этот способ более точен, чем использование последовательных разностей или отклонений от трендов.

При обработке методом наименьших квадратов последовательных разностей или отклонений от трендов обрабатываются чисто случайные величины.

КОРРЕЛЯЦИЯ РЯДОВ ДИНАМИКИ

При изучении развития явления во времени возникает необходимость оценить степень взаимосвязи в изменениях уров­ней двух или более рядов динамики различного содержания, но связанных между собой. Эта задача решается методами коррелирования:

1) уровней ряда динамики;

2) отклонений фактических уровней от тренда;

3) последовательных разностей, т. е. путем исчисления парного коэффициента корреляции.

Коррелирование уровней ряда динамики правильно показы­вает тесноту связи между рядами динамики лишь в том случае, если в каждом из них отсутствует автокорреляция.

В этом случае величину коэффициента корреляции находят по формуле

где хi - уровни факторного ряда динамики;

уi - уровни результативного ряда динамики.

Следовательно, прежде чем коррелировать ряды динамики (по уровням), необходимо проверить каждый из рядов на наличие или отсутствие в них автокорреляции (при помощи коэффициен­та автокорреляции). В случае наличия автокорреляции между уровнями ряда последняя должна быть устранена.

Рассмотрим способы ее исключения в рядах динамики. Коррелирование отклонений от выравненных уровней (тренда). Этот способ состоит в том, что коррелируют не сами уровни, а отклонения фактических уровней от выравненных, от­ражающих тренд, т. е. коррелируют остаточные величины. Для этого каждый ряд динамики выравнивают по определенной, ха­рактерной для него аналитической формуле, затем из эмпиричес­ких уровней вычитают выравненные (т. е. находят dx = хt -

;dy = уt -
;) и определяют тесноту связи между рассчитанными отклонениями (dx и dy ) по формуле

Коррелирование последовательных разностей. Исключить влияние автокорреляции можно путем вычитания из каждого уровня предшествующего ему, т. е. находя разности уровней (уiуi-1).При переходе от уровней к их разностям исключается влияние общей тенденции на колеблемость. При этом при изменении уровней по прямой можно коррелировать первые разности, при изменении по пара­боле n-го порядка - n-е разности. Формула коэффициента разно­стей, используемая для измерения тесноты связи между исследу­емыми рядами, имеет вид:

Коэффициент корреляции, рассчитанный для измерения тес­ноты зависимости изменения уровней двух рядов, является средним, обобщающим показателем. Однако для дли­тельного периода эта зависимость может меняться во времени. Поэтому чтобы судить о том, в ка­кие периоды зависимость между изменениями уровней двух ря­дов слабая или сильная, надо рассчитывать серию сколь­зящих коэффициентов корреляции для определенного интервала времени.