Среднее абсолютное значение 1% прироста можно рассчитать по формуле
(9.18)Способы обработки динамического ряда
В ходе обработки динамического ряда важнейшей задачей является выявление основной тенденции развития явления (тренда) и сглаживание случайных колебаний. Для решения этой задачи в статистике существуют особые способы, которые называют методами выравнивания.
Выделяют три основных способа обработки динамического ряда:
а) укрупнение интервалов динамического ряда и расчет средних для каждого укрупненного интервала;
б) метод скользящей средней;
в) аналитическое выравнивание (выравнивание по аналитическим формулам).
Укрупнение интервалов - наиболее простой способ. Он заключается в преобразовании первоначальных рядов динамики в более крупные по продолжительности временных периодов, что позволяет более четко выявить действие основной тенденции (основных факторов) изменения уровней.По интервальным рядам итоги исчисляются путем простого суммирования уровней первоначальных рядов. Для других случаев расcчитывают средние величины укрупненных рядов (переменная средняя). Переменная средняя рассчитывается по формулам простой средней арифметической.
Скользящая средняя - это такая динамическая средняя, которая последовательно рассчитывается при передвижении на один интервал при заданной продолжительности периода. Если, предположим, продолжительность периода равна 3, то скользящие средние рассчитываются следующим образом: (9.19)При четных периодах скользящей средней можно центрировать данные, т.е. определять среднюю из найденных средних. К примеру, если скользящая исчисляется с продолжительностью периода, равной 2, то центрированные средние можно определить так:
(9.20)Первую рассчитанную центрированную относят ко второму периоду, вторую - к третьему, третью - к четвертому и т.д. По сравнению с фактическим сглаженный ряд становится короче на (m - 1)/2, где m - число уровней интервала.
Важнейшим способом количественного выражения общей тенденции изменения уровней динамического ряда является
аналитическое выравнивание ряда динамики, которое позволяет получить описание плавной линии развития ряда. При этом эмпирические уровни заменяются уровнями, которые рассчитываются на основе определенной кривой, где уравнение рассматривается как функция времени. Вид уравнения зависит от конкретного характера динамики развития. Его можно определить как теоретически, так и практически. Теоретический анализ основывается на рассчитанных показателях динамики. Практический анализ - на исследовании линейной диаграммы.Задачей аналитического выравнивания является определение не только общей тенденции развития явления, но и некоторых недостающих значений как внутри периода, так и за его пределами. Способ определения неизвестных значений внутри динамического ряда называют интерполяцией. Эти неизвестные значения можно определить:
1) используя полусумму уровней, расположенных рядом с интерполируемыми;
2) по среднему абсолютному приросту;
3) по темпу роста.
Способ определения количественных значений за пределами ряда называют
экстраполяцией. Экстраполирование используется для прогнозирования тех факторов, которые не только в прошлом и настоящем обусловливают развитие явления, но и могут оказать влияние на его развитие в будущем.Экстраполировать можно по средней арифметической, по среднему абсолютному приросту, по среднему темпу роста.
При аналитическом выравнивании может иметь место
автокорреляция, под которой понимается зависимость между соседними членами динамического ряда. Автокорреляцию можно установить с помощью перемещения уровня на одну дату. Коэффициент автокорреляции вычисляется по формуле (9.21)Автокорреляцию в рядах можно устранить, коррелируя не сами уровни, а так называемые остаточные величины (разность эмпирических и теоретических уровней). В этом случае корреляцию между остаточными величинами можно определить по формуле
(9.22) рядов динамики предполагает и исследование сезонной неравномерности (сезонных колебаний), под которыми понимают устойчивые внутригодовые колебания, причиной которых являются многочисленные факторы, в том числе и природно-климатические. Сезонные колебания измеряются с помощью индексов сезонности, которые рассчитываются двумя способами в зависимости от характера динамического развития.При относительно неизменном годовом уровне явления индекс сезонности можно рассчитать как процентное отношение средней величины из фактических уровней одноименных месяцев к общему среднему уровню за исследуемый период:
(9.23)В условиях изменчивости годового уровня индекс сезонности определяется как процентное отношение средней величины из фактических уровней одноименных месяцев к средней величине из выровненных уровней одноименных месяцев:
(9.24)Массовые явления, как видели в предыдущих темах, развиваются в пространстве и во времени. Изучение происходящих при этом изменений является одной из важнейших задач статистики.
Процесс развития массового явления во времени принято возникать динамикой, а а показатели, характеризующие это развитие – статистическими рядами динамики. Следовательно:
Рядами динамики называются статистические данные, отображающие развитие явления в последовательные моменты или периоды времени.
Дело в том, что изменения массового явления во времени есть результат взаимодействия разнообразных причин и условий. Отсюда динамика отрицает совокупное действие их через время как собирательный фактор всех других.
В любом ряду динамики имеется два основных элемента: 1) показатель времени t; 2) соответствующие им уровни ряда (уровни развития изучаемого явления) .
В качестве показателя времени в рядах динамики выступают или определенные даты (моменты) времени, или отдельные периоды времени (годы, кварталы, месяца, сутки).
Уровни рядов динамики количественную оценку (меру) развития во времени исследуемого явления. Они могут выражаться абсолютными, относительными, средними или приростными величинами.
Ряды динамики, как правило, представляют в виде таблицы или графически. При графическом изображении ряда динамики (динамического ряда) на оси абсцисс строится шкала времени, а на оси ординат – шкала уравнений ряда (арифметическая или иногда логарифмическая). Изучение рядов динамики осуществляется в разных направлениях анализа состояния .
Закономерности в изменении уравнений ряда в одних проявляется довольно наглядно, в других они могут затушевываться влиянием случайных или других причин. Во всех случаях одной из первых задач статистики исследования является выявление основной тенденции (основного направления) изменения уровней ряда, именуемой «трендом» а чаще количественная оценка темпов развития.
С помощью рядов динамики развития массовых явлений изучаются в следующих основных направлениях: 1) характеристики уровней развития изучаемых явлений во времени; 2) изменение динамики изучаемых явлений посредством системы статистических показателей; 3) выявление и количественная оценка основных тенденций развития (периоды); 4) изучение периодических колебаний: 5) интерполяция и дистрополяция
Ряды динамики различаются по видам.
а) В зависимости от формы выражения уровней (или вида приводимых обобщающих показателей) ряды динамики обычно подразделяют на ряды
1) абсолютных 2) относительных 3) средних 4) приростных величин (показателей).
Исходными, первоначальными являются ряды динамики абсолютных величин, ряды динамики относительных и средних величин составляются на основе рядов динамики абсолютных величин и рассматриваются как производные.
б) В зависимости от формы выражения показателя времени в статике различают 1) моментные ряды и 2) интервальные ряды.
Моментные ряды: динамически отображают состояние изучаемых явлений на определенные даты (моменты) вмени Например, на начало года, или квартала, ли месяца. Так основные фонды учитываются по состоянию на 1-е число каждого месяца, перепись населения страны проводится по состоянию на критический момент времени.
В моментных рядах динамики период месяц датами (моментами времени ) называются интервалами ряда. Величина интервала зависит от характера явлений: для явлений, быстро изменяющихся, ряды динамики должны иметь более короткие интервалы.
Особенностью моментного ряда динамики является то, что в его уровни могут входить одни и те же единицы изучаемой совокупности. Так, основная часть работников предприятия, составляющих списочную численность на 01.01.1996 г., продолжающая работать в течение данного года, будет отображен в уравнениях последующих периодов (например на 01.02.06, 01.03.06 и т.д.)