По исходным уровням ряда нельзя судить о тенденции; 3-х летняя и 5-и летняя скользящи средние также не дают ответа.
3. Метод аналитического выравнивания
ŷt = a + bt
Для выравнивания по прямой применяют МНК:∑y = na + b∑t
∑yt = a∑t + b∑t2
∑y = na a =∑yt = b∑t2 b =
Аналитическое выравнивание по прямой динамического ряда безработицы в РБ
Таб№10
Год | Факт. ур. безраб. | t | t2 | yt | ŷt | y - ŷt | (y - ŷt)2 |
1 | 25.8 | - 59 | 3481 | - 1522.2 | 31.055 | - 5.255 | 27.61 |
2 | 28,5 | - 57 | 3249 | - 1624.5 | 31.015 | - 2.515 | 6.32 |
3 | 30,2 | - 55 | 3025 | - 1661 | 30.975 | - 0.775 | 0.60 |
4 | 31,4 | - 53 | 2809 | - 1664.2 | 30.935 | 0.465 | 0.21 |
5 | 29,7 | - 51 | 2601 | - 1514.7 | 30.895 | -1.195 | 1.42 |
6 | 28,8 | - 49 | 2401 | - 1411.2 | 30.855 | -2.055 | 4.22 |
7 | 29,5 | - 47 | 2209 | - 1386.5 | 30.815 | -1.315 | 1.73 |
8 | 30 | - 45 | 2025 | - 1350 | 30.775 | -0.755 | 0.57 |
9 | 30 | - 43 | 1849 | - 1290 | 30.735 | -0.735 | 0.54 |
10 | 31 | - 41 | 1681 | - 1271 | 30.695 | 0.305 | 0.09 |
11 | 32,6 | - 39 | 1521 | - 1271.4 | 30.655 | 1.945 | 3.78 |
12 | 34,1 | - 37 | 1369 | - 1261.7 | 30.615 | 3.485 | 12.14 |
13 | 36,2 | - 35 | 1225 | - 1267 | 30.575 | 5.625 | 31.64 |
14 | 36,4 | - 33 | 1089 | - 1201.2 | 30.535 | 5.865 | 34.39 |
15 | 34,9 | - 31 | 961 | - 1081.9 | 30.495 | 4.405 | 19.40 |
16 | 33,4 | - 29 | 841 | - 968.6 | 30.455 | 2.945 | 8.67 |
17 | 30,7 | - 27 | 729 | - 828.9 | 30.415 | 0.285 | 0.08 |
18 | 28,7 | - 25 | 625 | - 717.5 | 30.375 | -1.675 | 2.805 |
19 | 28,3 | - 23 | 529 | - 650.9 | 30.335 | -2.035 | 4.14 |
20 | 27,6 | - 21 | 441 | - 579.6 | 30.295 | -2.695 | 7.26 |
21 | 26,3 | - 19 | 361 | - 499.7 | 30.255 | -3.955 | 15.64 |
22 | 26,2 | - 17 | 289 | - 445.4 | 30.215 | -4.015 | 16.12 |
23 | 26,4 | - 15 | 225 | - 396 | 30.175 | -3.775 | 14.25 |
24 | 27,2 | - 13 | 169 | - 353.6 | 30.135 | -2.935 | 8.97 |
25 | 27,1 | - 11 | 121 | - 298.1 | 30.095 | -2.995 | 8.97 |
26 | 27,4 | - 9 | 81 | - 246.6 | 30.005 | -2.605 | 6.79 |
27 | 26,9 | - 7 | 49 | - 188.3 | 30.015 | -3.115 | 9.70 |
28 | 26,3 | - 5 | 25 | - 131.5 | 29.975 | -3.675 | 13.5 |
29 | 24,2 | - 3 | 9 | - 72.6 | 29.935 | -5.735 | 32.89 |
30 | 22,7 | - 1 | 1 | - 22.7 | 29.895 | -7.195 | 51.77 |
31 | 23,6 | 1 | 1 | 23.6 | 29.855 | -6.255 | 39.12 |
32 | 25,8 | 3 | 9 | 77.4 | 29.815 | -4.015 | 16.12 |
33 | 34,6 | 5 | 25 | 173 | 29.775 | 4.825 | 23.28 |
34 | 46,2 | 7 | 49 | 323.4 | 29.735 | 16.465 | 271.09 |
35 | 49,8 | 9 | 81 | 448.2 | 29.695 | 20.105 | 404.21 |
36 | 36,2 | 11 | 121 | 398.2 | 29.655 | 6.545 | 42.83 |
37 | 35,7 | 13 | 169 | 464.1 | 29.615 | 6.085 | 37.03 |
38 | 37,2 | 15 | 225 | 558 | 29.575 | 7.625 | 58.14 |
39 | 35,9 | 17 | 289 | 610.3 | 29.535 | 6.365 | 40.51 |
40 | 33 | 19 | 361 | 627 | 29.495 | 3.505 | 12.28 |
41 | 30 | 21 | 441 | 630 | 29.455 | 0.545 | 0.30 |
42 | 28,7 | 23 | 529 | 660.1 | 29.415 | -0.715 | 0.51 |
43 | 27,8 | 25 | 625 | 695 | 29.375 | -1.575 | 2.48 |
44 | 26,6 | 27 | 729 | 718.2 | 29.335 | -2.735 | 7.48 |
45 | 25,9 | 29 | 841 | 751.1 | 29.295 | -3.395 | 11.53 |
46 | 26,2 | 31 | 961 | 812.2 | 29.255 | -3.055 | 9.33 |
47 | 27,3 | 33 | 1089 | 900.9 | 29.215 | -1.915 | 3.67 |
48 | 29,6 | 35 | 1225 | 1036 | 29.175 | 0.425 | 0.18 |
49 | 30,4 | 37 | 1369 | 1124.8 | 29.135 | 1.265 | 1.60 |
50 | 31,2 | 39 | 1521 | 1216.8 | 29.095 | 2.105 | 4.43 |
51 | 31,1 | 41 | 1681 | 1275.1 | 29.055 | 2.045 | 4.18 |
52 | 30 | 43 | 1849 | 1290 | 29.015 | 0.985 | 0.97 |
53 | 28,1 | 45 | 2025 | 1264.5 | 28.975 | -0.875 | 0.765 |
54 | 26,4 | 47 | 2209 | 1240.8 | 28.935 | -2.535 | 6.43 |
55 | 25,8 | 49 | 2401 | 1264.2 | 28.895 | -3.095 | 9.580 |
56 | 25,4 | 51 | 2601 | 1295.4 | 28.855 | -3.455 | 11.940 |
57 | 24,6 | 53 | 2809 | 1303.8 | 28.815 | -4.215 | 17.770 |
58 | 25 | 55 | 3025 | 1375 | 28.775 | -3.755 | 14.100 |
59 | 27,5 | 57 | 3249 | 1567.5 | 28.735 | -1.235 | 1.5250 |
60 | 28,4 | 59 | 3481 | 1675.6 | 28.695 | -0.295 | 0.0870 |
∑ | 1792.5 | – | 71 980 | - 1378.3 | 1792.5 | – | 1399.682 |