Интервальный метод оценивания параметров распределения случайных величин заключается в определении интервала (а не единичного значения), в котором с заданной степенью достоверности будет заключено значение оцениваемого параметра. Интервальная оценка характеризуется двумя числами – концами интервала, внутри которого предположительно находится истинное значение параметра. Иначе говоря, вместо отдельной точки для оцениваемого параметра можно установить интервал значений, одна из точек которого является своего рода "лучшей" оценкой. Интервальные оценки являются более полными и надежными по сравнению с точечными, они применяются как для больших, так и для малых выборок. Совокупность методов определения промежутка, в котором лежит значение параметра Т, получила название методов интервального оценивания.
Способы построения интервальных оценок на примере оценки математического ожидания
Прямое и обратное интегральное преобразования Фурье.
Для непериодических функций следует естественным образом полагать, что период их бесконечно велик (Т→∞). При этом последовательность частот гармоник становится непрерывной и мы получаем интеграл
Тут обединены два интегральных преобразования Фурье: прямое , обратное ; Заметим, что для непериодической функции спектр является непрерывным (сплошным).Функция X(f) называется Фурье-образом функции x(t), а функция x(t) - оригиналом. Преобразования Фурье позволяют выполнять переход из временной области в частотную: от оригинала к образу (прямое преобразование Фурье) и обратно от спектра к временному представлению (обратное преобразование Фурье). Фурье-образ X(f) изучаемой непериодической функции x(t) является комплексной величиной.