Смекни!
smekni.com

Маркетинг 33 (стр. 1 из 2)

Задача 1

Фирма осуществляет производство и продажу товара через сеть фирменных магазинов. Данные о цене товара и объеме проданных товаров в среднем за сутки, в одном из географических сегментов рынка приведены в таблице 1.

Таблица 1 Данные о цене и объеме проданных товаров в среднем за сутки

Цена товара, тыс. руб. Объем продажи товара в среднем за сутки
3,00 42
3,05 44
3,10 40
3,15 36
3,20 32
3,25 27
3,30 28
3,35 23
3,40 21
3,45 18
3,50 16

Необходимо:

1. Проанализировать существующую зависимость между объемом продажи товара и уровнем его цены.

2. Определить коэффициент эластичности между ценой и объемом продажи товара.

3. Определить тесноту связи между ценой и объемом продажи товара.

Решение

Обозначим: «Х» - цена товара, «У» - объем продаж

Представим зависимость графически на рис.1.1

Рис 1.1 – Зависимость объема продажот цены

Произведем сглаживосние по прямой, т.е. построим зависимость У=а+вХ

Применим метод наименьших квадратов и получим зависимость

,

.

Решив эту систему, получим такие значения параметров

,

.

Получается зависимость У=-58,364Х +219,409 или

Q = 219,409 -58,364 Ц

Таблица 1.2 - Расчетная

Цена товара, тыс. руб. Х Объем продажи товара в среднем за сутки, У Х*У Х2 У2 у(х)
3 42 126 9 1764 44,32
3,05 44 134,2 9,3025 1936 41,40
3,1 40 124 9,61 1600 38,48
3,15 36 113,4 9,9225 1296 35,56
3,2 32 102,4 10,24 1024 32,64
3,25 27 87,75 10,5625 729 29,73
3,3 28 92,4 10,89 784 26,81
3,35 23 77,05 11,2225 529 23,89
3,4 21 71,4 11,56 441 20,97
3,45 18 62,1 11,9025 324 18,05
3,5 16 56 12,25 256 15,14
Сумма 35,75 327 1046,7 116,4625 10683 326,99
Средняя 3,25 29,7273 95,1545 10,5875 971,1818 29,7260

\

Рис 1.2- Линия тренда

2. Коэффициент эластичности рассчитывается по формуле:

Это число показывает процент изменения объема продаж при изменении цены на 1%.Таким образом, при увеличении цены на 1% объем продаж, в нашем случае, уменьшался на 6,38%.

Теснота связи между показателями цены и объема продаж рассчитывается по формуле:

(1.4)

Если r = 0 – 0,3 –связь слабая

r = 0,3 – 0,5 –связь умеренная

r = 0,5 – 0,7 –связь заметная

r = 0,7 – 0,98 –связь сильная

r >0,98 – стремится к функциональной

r > 0 –связь прямая

r< 0 –связь обратная

Так как значение r близко к 1, следовательно, связь между ценой и объемом продажи сильная.

В заключение можно сделать вывод:

1. Спрос эластичен. Коэффициент эластичности по абсолютному значению больше единицы и равен 6,38.

2. Между ценой и объемом производства существует обратная связь, которая стремится к функциональной

Задача 2

Для оперативного регулирования цены с учетом установленной эластичности спроса проанализировать затраты на производство и обращение товара на основании следующих исходных данных.

Таблица 2.1 Исходные данные об объеме производства и суммарных затратах на производство товара в среднем за сутки

Месяц Расходы производства в среднем за сутки, тыс.руб. ТС Объем реализации в среднем за сутки, штук, Q
01 2480 220
02 2385 170
03 2430 210
04 2400 190
05 2360 170
06 2370 160
07 2500 240
08 2550 260
09 2535 250
10 2600 270
11 2615 280
12 2460 200

Таблица 2.2. Исходные данные об объеме реализации и суммарных затратах обращения в среднем за сутки

Месяц Затраты обращения в среднем за сутки, тыс.руб. Объем реализации в среднем за сутки, штук, Q
01 1155 190
02 1135 160
03 1145 180
04 1190 230
05 1140 180
06 1200 240
07 1300 260
08 1225 250
09 1300 270
10 1195 230
11 1230 280
12 1220 260

Необходимо:

1. Используя данные таблицы 2.1 разделить суммарные издержки производства на постоянные и переменные затраты используя метод "максимальной и минимальной точки".

2. Используя данные таблицы 2.2 разделить суммарные издержки обращения товара на постоянные и переменные затраты с помощью метода наименьших квадратов.

3. Составить математическую модель валовых издержек производства и обращения товара.

Решение

Из всей совокупности данных выбираются два периода с наименьшим и наибольшим объемом производства. Из таблицы 2.1 видно, что наибольший объем производства в декабре составил 280 штук. Наименьший объем производства в августе - он составил 160штук.

Для расчета постоянных и переменных затрат составляем вспомогательную таблицу 2.3.

Таблица 2.3 Вспомогательная таблица для расчета постоянных и переменных затрат

Показатель Объем производства Разность между максимальными и минимальными величинами
максимальный минимальный
1.Уровень производства в среднем за сутки, (Q) 2. Q% 280100% 160 57,14 % 120 42,86 %
3. Расходы производства в среднем за сутки, тыс. руб. (ТС) 2615 2370 245

Определим ставку переменных издержек (удельные переменные расходы в себестоимости единицы продукции) по следующей формуле (2.1)

VC’= (ΔTCx100/ΔQ%)/Qmax (2.1)

где VC ' – ставка удельных переменных издержек;

ΔТС - разность между максимальными и минимальными величинами, равная 245тыс. рублей;

ΔQ % - разность между максимальными и минимальными величинами, равная 42,86%;

Q max- максимальный объем производства в среднем за сутки, равный 280 штук.

VC ' = (245 х 100 / 42,86 )/280 = 2,04 тыс. руб./ шт.

Общая сумма постоянных издержек (FC) определяется по следующей формуле (2.2):

FC = TСmax - VC' *Qmax (2.2)

где TCmax- суммарные издержки, соответствующие максимальному уровню производства, равные 2615 тыс. руб.

FC = 2615-2,04*280=2044 тыс. руб.

Таким образом, получена математическая модель суммарных издержек производства (ТС), которые могут быть рассчитаны по формуле (2.3).

ТС=FС+ VC' * Q = 2044 +2,04 * Q (2.3)

где Q - объем производства товара, штук.

Полученную математическую модель суммарных издержек производства проверяем на соответствие ее фактическим значениям (ходя бы по данным одного месяца). Так в январе месяце теоретическое значение ТС, рассчитанное с помощью формулы (2.3), получается равное

ТС=2044+2,04*220=2492,8 тыс. рублей, а фактическое значение в январе равно 2480 тыс. рублей, то есть значения близки. Поэтому модель, полученную по формуле 2.3, можно использовать в практической деятельности.

Таким образом, выражение 2.3 позволяет сделать вывод, что в среднем за сутки суммарные постоянные издержки производства товаров составляли 2-44 тысяч рублей, а остальные – переменные издержки. Так, в январе суммарные переменные издержки составляли 2,04*220= 448,8 тысяч рублей.

2.

Согласно этому методу модель суммарных затрат представляет собой уравнение прямой линии, то есть для нахождения постоянных и переменных издержек необходимо рассчитать коэффициенты a и b в уравнении прямой линии:

у = a + b*x,

где y – суммарные издержки обращения;

a – сумма постоянных издержек обращения;

b удельные переменные издержки обращения в расчет на единицу товара;

x - объем реализации, штук.

Определим средние значения показателей:

Удельные переменные издержки определяются по формуле (2.4)

получаем VC '=1,221

Для их расчета величины составляем вспомогательную таблицу 2.4.

Таблица 2.4 Вспомогательная таблица для расчета величины b

Месяц Объем реализации (x)
Суммарные издержки (y)
(
)2
(
)*(
)
01 190 -37,5 1155 -47,9 1406,25 1796,25
02 160 -67,5 1135 -67,9 4556,25 4583,25
03 180 -47,5 1145 -57,9 2256,25 2750,25
04 230 2,5 1190 -12,9 6,25 -32,25
05 180 -47,5 1140 -62,9 2256,25 2987,75
06 240 12,5 1200 -2,9 156,25 -36,25
07 260 32,5 1300 97,1 1056,25 3155,75
08 250 22,5 1225 22,1 506,25 497,25
09 270 42,5 1300 97,1 1806,25 4126,75
10 230 2,5 1195 -7,9 6,25 -19,75
11 280 52,5 1230 27,1 2756,25 1422,75
12 260 32,5 1220 17,1 1056,25 555,75
итого 2730 14435 17825 21787,5
среднее 227,5 1202,9167

Тогда суммарные переменные издержки на среднесуточный объем продаж (VC) составят: