2. Для анализа общей тенденции продажи тканей методом аналитического выравнивания:
Полученные результаты оформите в виде статистической таблицы. Сделайте выводы.
Решение:
1.1. Анализ ряда динамики
1. Абсолютный прирост
:· цепные:
· базисные:
где
поточный (отчетный) уровень; базисный уровень; предыдущий уровень2. Темпы (коэффициент) роста
:· цепные:
· базисные:
3. Темпы прироста
:· цепные:
· базисные:
4. Абсолютное значение одного процента прироста
· цепные:
· базисные:
Все результаты расчетов по данным формулам представлены в таблице 3.1.
Таблица 3.1.
годы | Продажа тканей, млн.руб | Показатели динамики | |||||||
Абсолютный прирост | Темпы (коэффициент) роста | Темпы прироста | Абсолютное значение одного процента прироста | ||||||
Базисные | Цепные | Базисные | Цепные | Базисные | Цепные | Базисные | Цепные | ||
1994 | 1,46 | - | - | - | - | - | - | - | - |
1995 | 2,32 | 0,86 | 0,86 | 1,589 | 1,589 | 58,904 | 58,904 | 0,0146 | 0,0146 |
1996 | 2,18 | 0,72 | -0,14 | 1,4932 | 0,9397 | 49,315 | -6,034 | 0,0146 | 0,0232 |
1997 | 2,45 | 0,99 | 0,27 | 1,6781 | 1,1239 | 67,808 | 12,385 | 0,0146 | 0,0218 |
1998 | 2,81 | 1,35 | 0,36 | 1,9247 | 1,1469 | 92,466 | 14,694 | 0,0146 | 0,0245 |
1.2. Средние показатели динамики:
1. Средний уровень ряда динамики
- интервального ряда:
- моментного ряда:
2. Средний абсолютный прирост
или
3. Средний коэффициент роста:
или
где,
цепной коэффициент роста; количество цепных коэффициентов4. Среднегодовой темп прироста (в процентах)
Рис.4.1. График интенсивности динамики.
Вывод: Анализируя полученные показатели и график интенсивности мы можем сказать, что в 2003 году продажа тканей снизилась на 33% по сравнению с предыдущими годами, но начиная с 2004 года продажа тканей начала увеличиваться, т.е. в среднем ежегодно продажа тканей поднялась на 10.05%
2. Выявим основную тенденцию продажи тканей методом аналитического выравнивания по уравнению линейного тренда.
Нормальное уравнения служат для отыскания параметров при выравнивании по прямой. Для выравнивания по прямой
, система нормальных уравнений принимает вид:При
, число членов ряда.Составим расчетную таблицу.
Таблица 3.2.
годы | Продажа тканей, , млн.руб | ||||
1994 | 1,46 | -2 | 4 | -2,92 | 1,674 |
1995 | 2,32 | -1 | 1 | -2,32 | 1,957 |
1996 | 2,18 | 0 | 0 | 0 | 2,24 |
1997 | 2,45 | 1 | 1 | 2,45 | 2,523 |
1998 | 2,81 | 2 | 4 | 5,62 | 2,806 |
11,22 | 0 | 10 | 2,83 | 11,2 |
По приведенным выше формулам найдем:
Уравнение прямой будет
, расчетные значения заносим в таблицу 3.2.Рис.4.1. Фактические и теоретические значения продажи тканей
Продажу тканей в 1999 году
по формуле будет млн.руб.Вывод:
Естественно, эта величина условная, рассчитанная при предположении, что линейная закономерность продажи тканей , принятая для 1994-1998 гг., сохранится на последующий период до 1999 г.
Задача №5
Имеются следующие данные о продаже товаров торговыми предприятием за три периода:
Товары | Количество, шт. | Цена, руб.за 1 шт. | ||||
1-й период | 2-й период | 3-й период | 1-й период | 2-й период | 3-й период | |
А | 115 | 102 | 120 | 75,2 | 78,4 | 82,2 |
Б | 286 | 385 | 440 | 140,4 | 160,6 | 156,4 |
В | 184 | 242 | 206 | 39,3 | 40,0 | 42,4 |
Определите индивидуальные и общие индексы: цен, физического объема товарооборота и товарооборота в фактических ценах на цепной и базисной основе. Покажите их взаимосвязь. Проведите сравнительный анализ.
Решение:
Для исчисления индивидуальных индексов применяются следующие формулы:
Индивидуальный индекс цен:
Где
цена за единицу количества продукта в текущем или отчетном периоде; цена за единицу количества продукта в базисном периоде.Индивидуальный индекс физического объема:
Где
количество реализованного товара в текущем периоде; количество реализованного товара в базисном периоде.