Подтверждением этого может служить сравнение водопрочных агрегатов чернозема и подзолистой почвы. Агрегаты этих двух почв резко отличаются и по своей прочности и по качественному составу гумусовых веществ. Агрегаты чернозема содержат в 2-3 раза больше гуминовой кислоты по сравнению с агрегатами подзолистой почвы.
Д. В. Хан описывает свои опыты так. Нами было взято около двух грамм водоустойчивых агрегатов размером 3-1 мм, выделенных из чернозема и подзолистой почвы; их обработали буферным раствором КН2РО4+NaНРО4, имеющим рН 5. Особенность этого раствора состоит в том, что он позволяет извлекать, по нашим наблюдениям, только фульвокислоты, не затрагивая гуминовых кислот. Извлечение проводилось в течение, примерно, 15 дней. Контролем, служили водоустойчивые агрегаты почвы той же величены, обработанные дистиллированной водой. Результаты показали, что удаление фульвокислот из водопрочных агрегатов чернозема в количестве 8% и из подзолистой почвы до 17% от общего содержания гумусовых веществ не вызывало никакого разрушения агрегатов. Фульвокислоты непрочно закрепляются на поверхности глинистых минералов группы монтмориллонита, и оказалось, что около 40% адсорбируемых кислот извлекается дистиллированной водой. Все это дает основание считать гуминовые кислоты наиболее активной частью гумусовых веществ почвы при образовании водопрочных агрегатов.
К 1969 году накопилось много экспериментальных данных, подтверждающих неоднородность гуминовых кислот почвы. Впервые на это обратил внимание А. А. Шмук (1924). Он пришел к выводу, что гуминовая кислота почвы обладает коллоидными свойствами и находится в двух модификациях: А- коллоиднорастворимая в воде, Е- нерастворимая.
По химическому составу обе формы гуминовых кислот близки. Однако по внешнему виду растворимая гуминовая кислота А резко отличается от нерастворимой гуминовой кислоты Е. Первая представляет собой блестящие черные жирные частички с раковистым изломом; вторая – сероватого оттенка с матовой поверхностью без раковистого излома.
Л. Н. Александрова (1949) при помощи водного диализа разделила гуминовую кислоту из чернозема на три фракции различающиеся по элементарному составу; они также характеризуются различной емкостью поглощения и разной устойчивостью к коагулирующему действию электролитов.
М. М. Кононова (1960) при помощи хроматографического метода и электрофреза показала, что гуминовые кислоты и фульвокислоты, выделенные из дерново-подзолистой почвы и чернозема, неоднородны. О неоднородности гумусовых веществ свидетельствуют работы <1 мк. Затем из нее были извлечены щелочью две фракции гумусовых веществ: до и после декольцирования.
Полученные донные показывают, что 1 и 2 фракции гуминовых кислот заметно различаются по химическому и групповому составу. Во всех случаях содержание углерода в первой фракции меньше, чем во второй. Обратная зависимость наблюдается по содержанию азота.
Для выделения водопрочных агрегатов почвы Д. В. Хан использовал видоизмененный метод Н. И. Саввинова (1931). По этому варианту метода мокрому просеиванию подвергается несмешанная навеска почвы, состоящая из различних фракций, а каждая фракция в отдельности.
Такой прием был испытан на тучном черноземе Курской области и серой лесной глубокооподзоленной почве Тульской области. В полученных агрегатах определяли общее содержание гумусовых веществ по методу Кнопа. Во всех водоустойчивых почвенных агрегатах, полученных в результате распада исходных сухих фракций почвы, обнаруживается общая закономерность. Она выражается в том, что общее содержание гумусовых веществ по мере уменьшения диаметра водоустойчивый агрегатов неизменно снижается.
Наименьшее количество гумусовых веществ отмечено во фракциях диаметром < 0,25 мм. Водоустойчивые агрегаты почвы даже одинакового диаметра, но полученные из исходных сухих агрегатов различного размера, содержат разное количество гумусовых веществ.
Описанный прием выделения водопрочных агрегатов почвы и характеристики их свойств по содержанию гумусовых веществ был использован Д. В. Ханом в дальнейшем. Для детального изучения были выбраны сухие агрегаты только одного размера, а именно 3-1 мм, так как, по мнению В. Р. Вильямса, Н. А. Качинского и других исследователей, структурные отдельности величиной от 1 до 3-5 мм наиболее ценны в агрономическом отношении. Кроме того, исследования Н. И. Саввинова (1931) показали, что водопрочные агрегаты почвы диаметром 3-1 мм преобладают над остальными фракциями (> 0,25 мм) и являются типичными.
При водной обработке сухих агрегатов 3-1 мм появились водоустойчивые агрегаты диаметром 1-0,5; 0,5-0,25; < 0,25 мм и остаток не распавшихся агрегатов 3-1 мм. Все эти фракции в отдельности после предварительного удаления растительных остатков были растерты и пропущены через сито с отверстиями диаметром 0,25 мм. Внешне особенно сильно различались фракции 3-1 и 0,25 мм. Растертые агрегаты размером 3-1 мм имели коричневую окраску, в то время как фракции <0,25 мм темно-серую. Между отдельными фракциями также были обнаружены различия, но они не были выражены так сильно. Поэтому более детальному исследованию подверглись две названые фракции. В дальнейшем фракцию диаметром < 0,25 мм назовем неводоустойчивой или распыленной (контроль) и будем сравнивать с остальными водоустойчивыми агрегатами, в частности с агрегатами размером 3-1 мм. Содержание гумусовых веществ в водоустойчивых агрегатах определяли методом Кнопа, общий азот – методом Кьельдаля.
Гумусовые вещества в исследуемых агрегатах почвы распределяются вполне закономерно: по мере уменьшения величены агрегатов, во всех исследуемых типов почв содержание гумусовых веществ неизменно падает. Наименьшее количество гумусовых веществ обнаружено в неводоустойчивых или распыленных фракциях < 0,25 мм. Наиболее резко различаются по содержанию гумуса и азота агрегаты размером 3-1 мм, сохранившиеся после водной обработки, и агрегаты фракций < 0,25 мм, причем первые содержат значительно больше гумуса и азота по сравнению с распыленными фракциями. Это дает некоторое основание утверждать, что количественное содержание гумусовых веществ имеет определенное значение для водопрочных агрегатов почвы. Помимо верхних горизонтов исследованию подверглись, водоустойчивые агрегата тех же размеров, выделенные из нижних горизонтов почв. И в этом случае наблюдается та же закономерность, которая установлена для водоустойчивых агрегатов верхних горизонтов. Из этого следует, что в формировании водоустойчивых агрегатов почвы различных размеров активную роль играют гумусовые вещества.
Рассмотрим теперь влияние состава гумусовых веществ на образование водопрочной структуры почвы.
По ряду химических и физико-химических свойств гуминовые кислоты по сравнению с фульвокислотами обладают более высокой реакционной способностью, поэтому являются активным клеящим веществом. Согласно данным многих ученных (Шмук, 1930; Тюрин, 1949; Александрова, 1949; Конова, 1960; Хан, 1959 и др.), гуминовые кислоты, выделенные из почвы, не являются однородным веществом и представляют собой группу высокомолекулярных азотсодержащих соединений с рядом общих признаков. В связи с этим возникает принципиальный вопрос о том, какие фракции гумусовых веществ принимают непосредственное участие в формировании водопрочной структуры почвы. В. Р. Вильямс еще в 1897 г. указал, что перегнойные вещества лишь определенного качества способны создавать прочные агрегаты почвы. К такому же мнению пришла Ф. Ю. Гельцер (1940), когда получила данные, показывающие отсутствие связи между содержанием гумусовых веществ и количеством водопрочных агрегатов в исходной форме. Аналогичные результаты получил Д. В. Хан.
Во всех используемых почвах не наблюдается количественной зависимости между содержанием гумусовых веществ и количеством агрегатов. Поэтому общее содержание гумусовых веществ в исходных почвах не может служить надежным критерием для характеристики степени их агрегатности. Убедительным подтверждением могут служить чернозем и серая лесная почва.
Эти две почвы весьма существенно различаются по содержанию гумусовых веществ и агрегатов. Чернозем содержит значительно больше гумусовых веществ, однако количество агрегатов < 0,25 мм в нем оказалось гораздо меньше. В этом отношении заслуживает внимания также подзолистая почва. По количеству водопрочных агрегатов > 0,25 мм она не сильно отличается от чернозема, хотя последний значительно богаче гумусовыми веществами.
Из сказанного следует, что попытка установить зависимость количества агрегатов от общего содержания гумусовых веществ в почве не дает положительных результатов, хотя позволяет сделать вывод о том, что не все количество гумуса почвы участвует в формировании водопрочных агрегатов. Хан высчитал, примерно, относительное количество той фракции гумусовых веществ, которая принимает участие в формировании водопрочных макроагрегатов почвы. Оно вычислено путем сопоставления количества гумусовых веществ, содержащихся в неводоустойчивых фракциях < 0,25 мм и в водоустойчивых агрегатов размером 3-1 мм. При этом содержание гумусовых веществ в неводоустойчивых фракциях размером < 0,25 мм было принято за исходную величину, характеризующую неактивную часть гумусовых веществ. Вычитая ее из количества гумусовых веществ, содержащихся в водопрочных агрегатах получены данные характеризующие активную часть гумуса.
Таким образом, гумусовые вещества почвы расчленены на две фракции, которые, вероятно, выполняют различные функции в процессе формирования водопрочной структуры почвы. Если это так, то эти две фракции гумусовых веществ должны отличаться одна от другой по ряду показателей. Для выяснения этого были исследованы гуминовые кислоты из агрегатов обладающих различной устойчивостью к размывающему действию воды. Исследованию подверглись водопрочные агрегаты диаметром 3-1 мм и неводоустойчивые фракции <0,25 мм.