Смекни!
smekni.com

Выборочный метод в статистике (стр. 3 из 4)

(бесповторный отбор), (14)

где

средняя из внутригрупповых дисперсий по вы­борочной совокупности;

- средняя из внутригрупповых дисперсий доли (альтер­нативного

признака) по выборочной совокупности.

Серийная выборка предполагает случайный отбор из генераль­ной совокупности не отдельных единиц, а их равновеликих групп (гнезд, серий) с тем, чтобы в таких группах подвергать наблюде­нию все без исключения единицы.

Применение серийной выборки обусловлено тем, что многие товары для их транспортировки, хранения и продажи упаковываются в пачки, ящики и т.п. Поэтому при контроле качества упакованного товара рациональнее проверить не­сколько упаковок (серий), чем из всех упаковок отбирать не­обходимое количество товара.

Поскольку внутри групп (серий) обследуются все без исключе­ния единицы, средняя ошибка выборки (при отборе равновеликих серий) зависит только от межгрупповой (межсерийной) дисперсии.

Среднюю ошибку выборки для средней количественного при­знака при серийном отборе находят по формулам:

(повторный отбор); (15)

(бесповторный отбор), (16)

где r - число отобранных серий; R - общее число серий.

Межгрупповую дисперсию серийной выборки вычисляют сле­дующим образом:

где

— средняя i-й серии;
- общая средняя по всей выбо­рочной совокупности.

Средняя ошибка выборки для доли (альтернативного при­знака) при серийном отборе:

(повторный отбор); (17)

(бесповторный отбор). (18)

Межгрупповую (межсерийную) дисперсию доли серийной вы­борки определяют по формуле:

(19)

где w i - доля признака в i-и серии;

- общая доля признака во всей выборочной совокупности.

В практике статистических обследований помимо рассмот­ренных ранее способов отбора применяется их комбинация (комбинированный отбор).

3. Распространение выборочных результатов на генеральную совокупность

Конечной целью выборочного наблюдения является ха­рактеристика генеральной совокупности на основе выбороч­ных результатов.

Выборочные средние и относительные величины распро­страняют на генеральную совокупность с учетом предела их возможной ошибки.

В каждой конкретной выборке расхождение между выбороч­ной средней и генеральной, т. е.

может быть меньше средней ошибки выборки
,
равно ей или больше ее.

Причем каждое из этих расхождений имеет различную веро­ятность (объективную возможность появления события). По­этому фактические расхождения между выборочной средней и генеральной

можно рассматривать как некую предельную ошибку, связанную со средней ошибкой и гарантируемую с оп­ределенной вероятностью Р.

Предельную ошибку выборки для средней (

) при повторном отборе можно рассчитать по формуле:

(20)

где t - нормированное отклонение — «коэффициент доверия», за­висящий от вероятности, с которой гарантируется предельная ошибка выборки;

— средняя ошибка выборки.

Аналогичным образом может быть записана формула предельной ошибки выборки для доли

при повторном отборе:

(21)

При случайном бесповторном отборе в формулах расчета пре­дельных ошибок выборки (20) и (21) необходимо умножить подкоренное выражение на 1 - (n / N).

Формула предельной ошибки выборки вытекает из основных положений теории выборочного метода, сформулированных в ряде теорем теории вероятностей, отражающих закон больших чисел.

На основании теоремы П.Л. Чебышева (с уточ­нениями А.М. Ляпунова) с вероятностью, сколь угодно близкой к единице, можно утверждать, что при достаточно большом объеме выборки и ограниченной генеральной дисперсии выборочные обоб­щающие показатели (средняя, доля) будут сколь угодно мало отли­чаться от соответствующих генеральных показателей.

Применительно к нахождению среднего значения признака эта теорема может быть записана так:

(22)

а для доли признака:

(23)

где

(24)

Таким образом, величина предельной ошибки выборки мо­жет быть установлена с определенной вероятностью.

Значения функции Ф(t) при различных значениях t как ко­эффициента кратности средней ошибки выборки, определяются на основе специально составленных таблиц. Приведем некото­рые значения, применяемые наиболее часто для выборок дос­таточно большого объема (n

30):

t 1,000 1,960 2,000 2,580 3,000

Ф(t) 0,683 0,950 0,954 0,990 0,997

Предельная ошибка выборки отвечает на вопрос о точности выборки с определенной вероятностью, значение которой оп­ределяется коэффициентом t (в практических расчетах, как правило, заданная вероятность не должна быть менее 0,95). Так, при t = 1 предельная ошибка составит

=

. Следова­тельно, с вероятностью 0,683 можно утверждать, что разность между выборочными и генеральными показателями не превы­сит одной средней ошибки выборки. Другими словами, в 68,3% случаев ошибка репрезентативности не выйдет за пределы ±1
.

При t = 2 с вероятностью 0,954 она не выйдет за пределы ±2

,

при t = 3 с вероятностью 0,997 — за пределы ±3

и т.д.

Как видно из приведённых выше значений функции Ф (t) (см. последнее значение), вероятность появления ошибки, равной или большей утроенной средней ошибки выборки, т. е.

3
крайне мала и равна 0,003, т. е. 1—0,997. Такие маловероятные события считаются практически невозможными, а потому величину
= 3
можно принять за предел возможной ошибки выборки.

Выборочное наблюдение проводится в целях распростране­ния выводов, полученных по данным выборки, на генеральную совокупность. Одной из основных задач является оценка по данным выборки исследуемых характеристик (параметров) гене­ральной совокупности.

Предельная ошибка выборки позволяет определить предель­ные значения характеристик генеральной совокупности и их дове­рительные интервалы:

• для средней

(25)

для доли

(26)

Это означает, что с заданной вероятностью можно утвер­ждать, что значение генеральной средней следует ожидать в пределах от

-
до
+

Аналогичным образом может быть записан доверительный интервал генеральной доли:

Наряду с абсолютным значением предельной ошибки вы­борки рассчитывается и предельная относительная ошибка выбор­ки, которая определяется как процентное отношение предель­ной ошибки выборки к соответствующей характеристике выбо­рочной совокупности: