Смекни!
smekni.com

Корреляционно-регрессионный анализ взаимосвязи производственных показателей предприятия организ (стр. 3 из 10)

, (7)

где m – число параметров уравнения регрессии.

Величина FR сравнивается с критическим значением FK, которое определяется по таблице F – критерия с учетом принятого уровня значимости

и числа степеней свободы k1=m-1 и k2=n-m.

Если FR> FK, то величина индекса корреляции признается существенной.

По степени тесноты связи различают количественные критерии оценки тесноты связи.

Таблица Чэддока

Величина коэффициента корреляции

Характер связи

до 0,3

практически отсутствует

0,3-0,5

слабая

0,5-0,7

умеренная

0,7-1,0

сильная

С целью расширения возможностей экономического анализа используются частные коэффициенты эластичности:

(8)

Он показывает, насколько процентов в среднем изменится значение результативного признака при изменении факторного на 1%.


4. Пример для теоретической части

Имеются следующие данные о производстве молочной продукции и стоимости основных производственных фондов по 15 предприятиям Московской области. Произведем синтез адекватной экономико-математической модели между изучаемыми признаками на базе метода наименьших квадратов. С экономической точки зрения сформулируем выводы относительно исследуемой связи.

Зависимость y от x найдем с помощью корреляционно-регрессионного анализа. Рассмотрим прямолинейную форму зависимости y от x:

Таблица 1

Показатели работы предприятий Московской области

Номер предприятия

Молочная продукция (млн. руб.)

Стоимость ОПФ (млн.руб.)

1

6,0

3,5

2

9,2

7,5

3

11,4

5,3

4

9,3

2,9

5

8,4

3,2

6

5,7

2,1

7

8,2

4,0

8

6,3

2,5

9

8,2

3,2

10

5,6

3,0

11

11,0

5,4

12

6,5

3,2

13

8,9

6,5

14

11,5

5,5

15

4,2

8,2

Итого:

120,4

66,0

Параметры этого уравнения найдем с помощью метода наименьших квадратов и, произведя предварительные расчеты, получим:

Получаем следующее уравнение регрессии:

Далее определим адекватность полученной модели. Определим фактические значения t-критерия для a0 и a1.

для параметра a0:

для параметра a1:

где στ – среднее квадратическое отклонение результативного признака от выровненных значений ŷ ;

σх – среднее квадратическое отклонение факторного признака x от

общей средней

.

Данные подставляем в формулы и получаем:

По таблице распределения Стьюдента я нахожу критическое значение t-критерия для ν= 15-2 = 13 . Вероятность α я принимаю 0,05. tтабл равно 2,1604. Так как, оба значения ta0 и ta1 больше tтабл, то оба параметра а0 и а1 признаются значимыми и отклоняется гипотеза о том, что каждый из этих параметров в действительности равен 0 , и лишь в силу случайных обстоятельств оказался равным проверяемой величине.

Из полученного уравнения следует, что с увеличением основных производственных фондов на 1 млн. руб., стоимость молочной продукции возрастает в среднем на 1,311 млн. руб.

II. Расчетная часть

Имеются исходные выборочные данные по организациям одной из отраслей хозяйствования в отчетном году (выборка 20%-ная, бесповторная) о результатах производственной деятельности организаций:

Таблица Исходные данные

Исходные данные

№ организации

Среднесписочная численность работников, чел.

Выпуск продукции, млн.руб.

Среднегодовая стоимость ОПФ, млн.руб.

Уровень производительности труда, млн.руб./чел

Фондоотдача, млн.руб./млн.руб.

1

2

3

4

5

6

1

162

36,450

34,714

0,225

1,050

2

156

23,400

24,375

0,150

0,960

3

179

46,540

41,554

0,260

1,120

4

194

59,752

50,212

0,308

1,190

5

165

41,415

38,347

0,251

1,080

6

158

26,860

27,408

0,170

0,980

7

220

79,200

60,923

0,360

1,300

8

190

54,720

47,172

0,288

1,160

9

163

40,424

37,957

0,248

1,065

10

159

30,210

30,210

0,190

1,000

11

167

42,418

38,562

0,254

1,100

12

205

64,575

52,500

0,315

1,230

13

187

51,612

45,674

0,276

1,130

14

161

35,420

34,388

0,220

1,030

15

120

14,400

16,000

0,120

0,900

16

162

36,936

34,845

0,228

1,060

17

188

53,392

46,428

0,284

1,150

18

164

41,000

38,318

0,250

1,070

19

192

55,680

47,590

0,290

1,170

20

130

18,200

19,362

0,140

0,940

21

159

31,800

31,176

0,200

1,020

22

162

39,204

36,985

0,242

1,060

23

193

57,128

48,414

0,296

1,180

24

158

28,440

28,727

0,180

0,990

25

168

43,344

39,404

0,258

1,100

26

208

70,720

55,250

0,340

1,280

27

166

41,832

38,378

0,252

1,090

28

207

69,345

55,476

0,335

1,250

29

161

35,903

34,522

0,223

1,040

30

186

50,220

44,839

0,270

1,120