Таблица 4 | |||||
Структура фирм по уровню производительности труда | |||||
Номер группы | Группы фирм по уровню производительности труда, тыс.руб./чел | Число фирм | Накопленная частота | Накопленная частость, % | |
в абсолютном выражении | в % к итогу | ||||
1 | 2 | 3 | 4 | 5 | 6 |
I | 120-168 | 3 | 10,00 | 3 | 10,33 |
II | 168-216 | 4 | 13,33 | 7 | 23,33 |
III | 216-264 | 12 | 40,00 | 19 | 63,33 |
IV | 264-312 | 7 | 23,34 | 26 | 86,67 |
V | 312-360 | 4 | 13,33 | 30 | 100,00 |
Итого: | 30 | 100,00 |
Вывод. Анализ интервального ряда распределения изучаемой совокупности организаций показывает, что распределение организаций по уровню производительности труда не является равномерным: преобладают организации с уровнем производительности труда от 216 до 264 тыс.руб./чел (это 12 организаций, доля которых составляет 40%); самая малочисленная группа организаций имеет уровень производительности труда от 120 до 168 тыс. руб./чел, которая включает 3 организации, что составляет 10% от общего числа организаций.
2. Решение:
По данным таблицы 3 (графы 2 и 3) строим график распределения организаций по уровню производительности труда.
Рис. 1. График полученного ряда распределения
Мода (Мо) – значение случайной величины, встречающееся с наибольшей вероятностью в дискретном вариационном ряду – вариант, имеющий наибольшую частоту. Наибольшей частотой является число 12. Этой частоте соответствует модальное значение признака, т.е. количество предприятий. Мода свидетельствует, что в данном примере чаще всего встречаются группы предприятий, входящие в интервал от 216 до 264.
В интервальных рядах распределения с равными интервалами мода вычисляется по формуле:
(3)где хМo – нижняя граница модального интервала,
h – величина модального интервала,
fMo – частота модального интервала,
fMo-1 – частота интервала, предшествующего модальному,
fMo+1 – частота интервала, следующего за модальным.
Вывод. В данном случае наибольший процент предприятий по уровню производительности труда приходится на интервал от 216 до 264, а само значение средней характеризуется 246 (тыс.руб./чел)
Медиана (Ме) – это вариант, который находится в середине вариационного ряда. Медиана делит ряд на две равные (по числу единиц) части – со значениями признака меньше медианы и со значениями признака больше медианы. Чтобы найти медианы, необходимо отыскать значение признака, которое находится в середине упорядоченного ряда.
Определяем медианный интервал, используя графу 5 табл. 4. Медианным интервалом является интервал 216-264 тыс.руб./чел, т.к. именно в этом интервале накопленная частота Sj=19 впервые превышает полу-сумму всех частот
.В интервальных рядах распределения медианное значение (поскольку оно делит всю совокупность на две равные по численности ряды) оказывается в каком-то из интервалов признака х. Этот интервал характерен тем, что его кумулятивная частота (накопленная сумма частот) равна или превышает полу-сумму всех частот ряда. Значение медианы вычисляется линейной интерполяцией по формуле:
(4)Вывод: Полученный результат говорит о том, что из 30 организаций половина организаций имеют уровень производительности труда менее 248 тыс. руб./чел, а вторая свыше.
3. Решение:
Для расчета характеристик ряда распределения
, σ, σ2, Vσ на основе табл. 4 строим вспомогательную таблицу 5 (x’j – середина интервала). Таблица 5 | ||||||
Расчетная таблица для нахождения характеристик ряда распределения | ||||||
Группы уровней производитель-ности труда, тыс.руб. | Середина интервала | Число органи-заций | ||||
1 | 2 | 3 | 4 | 5 | 6 | 7 |
120-168 | 144 | 3 | 432 | -104 | 10 816 | 32 448 |
168-216 | 192 | 4 | 768 | -56 | 3 136 | 12 544 |
216-264 | 240 | 12 | 2 880 | -8 | 64 | 768 |
264-312 | 288 | 7 | 2 016 | 40 | 1 600 | 11 200 |
312-360 | 336 | 4 | 1 344 | 88 | 7 744 | 30 976 |
Итого: |
| 30 | 7 440 | 87 936 |
Средняя арифметическая взвешенная – средняя сгруппированных величин x1, x2, …, xn – вычисляется по формуле:
(5)Среднее квадратическое отклонение – это обобщающая характеристика размеров вариации признака в совокупности; оно показывает, на сколько в среднем отклоняются конкретные варианты от среднего значения; является абсолютной мерой колеблемости признака и выражается в тех же единицах, что и варианты, поэтому экономически хорошо интерпретируется.
Рассчитаем среднее квадратическое отклонение, которое равно корню квадратному из дисперсии:
(6)Рассчитаем дисперсию:
σ2 = 54,14052=2931,2
Коэффициент вариации представляет собой выраженное в процентах отношение средне квадратического отклонения к средней арифметической.
Рассчитаем коэффициент вариации:
(7)Вывод. Анализ полученных значений показателей
и σ говорит о том, что средняя величина уровня производительности труда составляет 248 тыс.руб./чел отклонение от этой величины в ту или иную сторону составляет 54,1405 (или 21,83%), наиболее характерный уровень производительности труда находится в пределах от 194 до 302 тыс.руб./чел (диапазон ).