Смекни!
smekni.com

Корреляционно-регрессионный анализ взаимосвязи производственных показателей предприятия организ (стр. 9 из 10)

Выполнение Задания 3.

1. Решение:

Применяя выборочный метод наблюдения, необходимо рассчитать ошибки выборки (ошибки репрезентативности), т.к. генеральные и выборочные характеристики, как правило, не совпадают, а отклоняются на некоторую величину ε.

Принято вычислять два вида ошибок выборки - среднюю

и предельную
.

Для расчета средней ошибки выборки

применяются различные формулы в зависимости от вида и способа отбора единиц из генеральной совокупности в выборочную.

Для собственно-случайной и механической выборки с бесповторным способом отбора средняя ошибка

для выборочной средней
определяется по формуле

, (15)

где

– общая дисперсия изучаемого признака,

N – число единиц в генеральной совокупности,

n – число единиц в выборочной совокупности.

Предельная ошибка выборки

определяет границы, в пределах которых будет находиться генеральная средняя:

,

, (16)

где

– выборочная средняя,

– генеральная средняя.

Предельная ошибка выборки

кратна средней ошибке
с коэффициентом кратности t (называемым также коэффициентом доверия):

(17)

Коэффициент кратности t зависит от значения доверительной вероятности Р, гарантирующей вхождение генеральной средней в интервал

, называемый доверительным интервалом.

Наиболее часто используемые доверительные вероятности Р и соответствующие им значения t задаются следующим образом (табл. 11):

Таблица 11

Доверительная вероятность P

0,683

0,866

0,954

0,988

0,997

0,999

Значение t

1,0

1,5

2,0

2,5

3,0

3,5

По условию Задания 2 выборочная совокупность насчитывает 30 организаций, выборка 20% бесповторная, следовательно, генеральная совокупность включает 150 организаций. Выборочная средняя

, дисперсия
определены в Задании 1 (п. 3). Значения параметров, необходимых для решения задачи, представлены в табл. 12:

Таблица 12


Р

t

n

N

0,683

1,0

30

150

248

2931,2

Рассчитаем среднюю ошибку выборки по формуле (15):

Рассчитаем предельную ошибку выборки по формуле (17):

тыс.руб./чел

Определим доверительный интервал для генеральной средней по формуле (16):

248- 8,8411

248+8,8411

239тыс.руб/чел

257 тыс.руб./чел

Вывод. На основании проведенного выборочного обследования с вероятностью 0,683 можно утверждать, что для генеральной совокупности организаций средняя величина среднего уровня производительности труда находится в пределах от 239 до 257 тыс.руб./чел.

2. Решение:

Доля единиц выборочной совокупности, обладающих тем или иным заданным свойством, выражается формулой

, (18)

где m – число единиц совокупности, обладающих заданным свойством;

n – общее число единиц в совокупности.

Для собственно-случайной и механической выборки с бесповторным способом отбора предельная ошибка выборки

доли единиц, обладающих заданным свойством, рассчитывается по формуле

, (19)

где w – доля единиц совокупности, обладающих заданным свойством;

(1-w) – доля единиц совокупности, не обладающих заданным свойством,

N – число единиц в генеральной совокупности,

n– число единиц в выборочной совокупности.

Предельная ошибка выборки

определяет границы, в пределах которых будет находиться генеральная доля р единиц, обладающих исследуемым признаком:

(20)

По условию Задания 3 исследуемым свойством организаций является равенство или превышение среднего уровня производительности труда 264 тыс. руб/чел.

Число организаций с данным свойством определяется из табл. 2 (графа 2):

m=11

Рассчитаем выборочную долю по формуле (18):

Рассчитаем предельную ошибку выборки для доли по формуле (19):

Определим доверительный интервал генеральной доли по формуле (20):

0,32

0,48

или

32%

48%

Вывод. С вероятностью 0,683 можно утверждать, что в генеральной совокупности организаций региона доля организаций с средним уровнем производительности труда 264 тыс.руб./чел и более будет находиться в пределах от 32% до 48%.

Задание 4.

По результатам расчетов заданий 1 и 2 найдите уравнение корреляционной связи между фондоотдачей и производительностью труда, изобразите корреляционную связь графически.

Для определения тесноты корреляционной связи рассчитайте коэффициент корреляции. Сделайте выводы.

Выполнение задания 4.

1. Решение:

Имеются данные по 30 предприятиям по уровню производительности труда и фондоотдачи.

Уравнение корреляционной связи (уравнение регрессии, модели) выражает количественное соотношение между факторным (x – фондоотдача) и результативным (y – уровень производительности труда) признаками. Рассмотрим прямолинейную форму зависимости y от x:

Поскольку для установления наличия корреляционной связи между признаками применялся метод аналитической группировки, то параметры для уравнения регрессии рационально определить по сгруппированным данным (табл. 7). В таком случае система нормальных уравнений для уравнения прямой будет иметь вид:

(21)

где

– групповые средние результативного признака, x – середина интервалов факторного признака. Используя данные табл. 7 строим расчетную таблицу 13, чтобы получить численные значения параметров уравнения регрессии а0 и а1:

Таблица 13

Расчетная таблица для определения численных значений параметров уравнения регрессии

Середина интер-вала

Число органи-заций

Групповые средние

xf

x2f

xy

1

2

3

4

5

6

7

8

9

0,940

4

145,000

580,000

3,760

545,200

3,534

157,61

136,300

1,020

7

211,000

1 477,000

7,140

1 506,540

7,283

204,09

215,220

1,100

10

255,000

2 550,000

11,000

2 805,000

12,100

250,56

280,500

1,180

5

293,000

1 465,000

5,900

1 728,700

6,962

297,04

345,740

1,260

4

338,000

1 352,000

5,040

1 703,520

6,350

343,51

425,880

Итого:

30

1 242,000

7 424,000

32,840

8 288,960

36,230

1252,81

1 403,640

Данные подставим в систему уравнений (21) и решим: