Смекни!
smekni.com

Понятие метода выборочного наблюдения (стр. 2 из 3)

В – третьих, и это, пожалуй, самое главное, преимущество выборки, ее значение возрастают в силу возможности (когда это необходимо) расширения программы наблюдения. Так как исследованию подвергается сравнительно небольшая часть всей совокупности, можно более широко и детально изучить отдельные единицы и их группы по интересующим исследователей признакам.

И последний фактор превращения выборочного наблюдения в важнейший источник социально – правовой информации о правонарушениях и мерах государственного контроля над ними – возможность его использовать в целях уточнения и для разработки данных сплошного обследования. Выборочная разработка данных сплошного наблюдения связанна с потребностью представления оперативных предварительных итогов обследования. Кроме того, при обобщении данных сплошного учёта (например, карточек единого учета преступлений) невозможно вести сплошную разработку по всем сочетаниям рассматриваемых признаков. Она сложна и дорогостоящая. В этих условиях выборочный метод позволяет получить необходимые сведения приемлемой точности, когда факторы времени и стоимости делают сплошную разработку нецелесообразной.

3. Виды отбора при выборочном наблюдении

Процесс образования выборки называется отбором, который осуществляется в порядке беспристрастного, случайного отбора единиц из генеральной совокупности.

Основным условием проведения выборочного наблюдения является предупреждение возникновения систематических (тенденциозных) ошибок, возникающих вследствие нарушения принципа равных возможностей попадания в выборку каждой единицы совокупности. Предупреждение систематических ошибок достигается в результате применения научно обоснованных способов формирования выборочной совокупности. Существуют различные способы отбора:

При индивидуальном отборе в выборку отбираются отдельные единицы совокупности. Отбор повторяется столько раз, сколько необходимо отобрать единиц.

Групповой отбор заключается в отборе серий (например, отбор изделий для проверки их целыми партиями). Если обследованию подвергаются все единицы отобранных серий, отбор называется серийным, а если обследуется только часть единиц каждой серии, отбираемых в индивидуальным порядке из серии, то – комбинированным.

Если в процессе отбора отобранная единица не исключается из совокупности, т.е. возвращается в совокупность, и может быть повторно отобранной, то такой отбор называется повторным или возвратным, в противном случае – бесповторным или безвозвратным. Серийный отбор, как правило, безвозвратный.

При повторном отборе вероятность попадания в выборочную совокупность всех единиц генеральной совокупности остается одинаковой. При бесповторном - для оставшихся единиц совокупности вероятность попадания в выборку увеличивается.

Собственно–случайный отбор состоит в отборе единиц (серий) из всей генеральной совокупности в целом посредством жеребьевки или на основании таблиц случайных чисел.

Жеребьевка состоит в том, что на каждую единицу отбора составляется карточка, которой присуждается порядковый номер. После тщательного перемешивания по очереди извлекаются карточки, пока не будет отобрано требуемое число единиц.

Случайными числами называются ряды чисел, являющихся реализациями последовательности взаимно независимых и одинаково распределенных случайных величин. Эти последовательности чисел получаются либо с помощью физических генераторов (подбрасывание кубиков с нанесенными на их сторонами цифрами; вытягиванием из урны карточек с написанными на них цифрами, преобразование случайных сигналов и др. физико–технические процессы), либо с помощью программных генераторов (аналитическим методом с помощью программ для ЭВМ). Числа, являющиеся результатами соответствующей вычислительной процедуры, называются псевдослучайными числами. Последовательность псевдослучайных чисел носит детерминированный характер, но в определенных границах она удовлетворяет свойствам равномерного распределения и свойству случайности.

Случайные числа могут быть выбраны по таблице случайных чисел (приложение 1), которая содержит 2000 случайных чисел, объединенных для удобства пользования таблицей в 500 блоков по 4 значения) Например,

5489, 5583, 3156, 0835, 1988, 3912.

Применение комбинаций этих цифр зависит от размера совокупности: если в генеральной совокупности 1000 единиц, то порядковый номер каждой единицы должен состоять из двух цифр от 000 до 999. В этом случае первые 8 номеров единиц выборочной совокупности следующие:

548, 955, 833, 156, 083, 519, 883, 912.

При произвольном объеме генеральной совокупности, отличающегося от 100, 1000, 10000 могут использоваться псевдослучайные числа, сформированные на ЭВМ, или из таблицы случайных чисел формируется последовательность случайных величин, распределенных в интервале от 0 до 1. Например, в приведенном выше примере

0,5489; 0,5583; 0,3156; 0,0835; 0,1988; 0,3912 и т.д.

Если генеральная совокупность состоит из 2000 единиц, то в выборочную совокупность должны войти единицы с номерами:

2000 × 0,5489 = 1097,8 или 1099;

2000 × 0,5583 = 1116,6 или 1117;

2000 × 0,3156 = 631,2 или 631;

2000 × 0,0835 = 167,0 или 167;

2000 × 0,1988 = 397,6 или 398;

2000 × 0,3912 = 782,4 или 782.

Процесс формирования случайных чисел и определения номера отбираемой единицы продолжается до тех пор, пока не будет получен заданный объем выборочной совокупности.

Можно предложить другой способ случайного отбора единиц в выборку. Допустим, что выборка состоит из 75 единиц, а генеральная совокупность - из 780. Из таблицы случайных чисел выбираются, например, следующие

5489, 5583, 3156, 0835, 1988, 3912.

В выборку могут войти только единицы, порядковые номера которых равны трехзначным числам меньше 780. Поэтому, используя только три последние цифры каждого числа, отбирается необходимые 75 номеров: 489, 583, 156 и т.д. Можно использовать и первые три цифры каждого числа, тогда отобранные номера: 548, 558, 315, 83, 198, 391. Можно разбить случайные четырехзначные случайные числа на ряд, состоящий из трехзначных чисел:

548, 955, 833, 156, 083, 519, 883, 912

и отобрать из них номера, которые меньше 780, а именно: 548, 156, 83, 519.

Механический отбор заключается в том, что составляется список единиц генеральной совокупности и в зависимости от числа отбираемых единиц (серий) устанавливается шаг отбора, т.е. через какой интервал следует брать для наблюдения единицы (серии). Например, в простейшем случае, при 10%–м отборе, отбирается каждая десятая единица по этому списку, т.е. если первой взята единица за № 1, то следующими отбираются 11–я, 21–я и т.д. В такой последовательности производится отбор, если единицы совокупности расположены в списке без учета их “рангов”, т.е. значимости по изучаемым признакам. Начало отбора в этом случае не имеет значения, его можно начать в приведенном примере от любой единицы из первого десятка. При расположении единиц совокупности в ранжированном порядке за начало отбора должна быть принята середина интервала (шага отбора) во избежание систематической ошибки выборки.

При достаточно большой совокупности этот способ отбора близок к собственно случайному, при условии, что применяемый список не составлен таким образом, чтобы какие-то единицы совокупности имели больше шансов попасть в выборку.

При типическом отборе генеральная совокупность разбивается на типические группы единиц по какому–либо признаку (формируются однородные совокупности), а затем из каждой из них производится механический или собственно–случайный отбор. Отбор единиц из типов производится тремя методами: пропорционально численности единиц типических групп, непропорционально численности единиц типических групп и пропорционально колеблемости признака в группах.

4. Ошибки выборочного отбора

Разность между показателями выборочной и генеральной совокупности называется ошибкой выборки. Ошибки выборки подразделяются на ошибки регистрации и ошибки репрезентативности.

Ошибки регистрации возникают из-за неправильных или неточных сведений. Источниками таких ошибок могут быть непонимание существа вопроса, невнимательность регистратора, пропуск или повторный счет некоторых единиц совокупности, описки при заполнении формуляров и т.д.

Среди ошибок регистрации выделяются систематические, обусловленные причинами, действующими в каком-то одном направлении и искажающими результаты работы (например, округление цифр, тяготение к полным пятеркам, десяткам и т.д.), и случайные,проявляющиеся в различных направлениях, уравновешивающие друг друга и лишь изредка дающие заметный суммарный итог.

Расхождение между значениями изучаемого признака выборочной и генеральных совокупностей является ошибкой репрезентативности (представи-тельности). Она может быть случайной и систематической. Случайная возникает в силу того, что выборочное статистическое наблюдение является несплошным наблюдением, и выборка недостаточно точно воспроизводит (репрезентирует) генеральную совокупность.

Систематические ошибка репрезентативности возникают из-за неправильного, тенденциозного отбора единиц, при котором нарушается основной принцип научно организованной выборки - принцип случайности.

При определении величины репрезентативной ошибки предполагается, что ошибка регистрации равна нулю. Определение ошибки производится по формулам ошибки выборочной доли и ошибки выборочной средней. Систематическая ошибка репрезентативности возникает вследствие нарушения правил отбора единиц генеральной совокупности, в частности принципа беспристрастного, непреднамеренного отбора. Систематическая ошибка может привести к полной непригодности результатов наблюдений.

Рассмотрим на примере, насколько отличаются выборочные и генеральные показатели по данным об успеваемости студентов (две 10%-е выборки):