Для того, чтобы средний показатель был действительно типизирующим, он должен рассчитываться с учетом определенных принципов.
Остановимся на некоторых общих принципах применения средних величин.
1. Средняя должна определяться для совокупностей, состоящих из качественно однородных единиц.
2. Средняя должна исчисляться для совокупности, состоящей из достаточно большого числа единиц.
3. Средняя должна рассчитываться для совокупности, единицы которой находятся в нормальном, естественном состоянии.
4. Средняя должна вычисляться с учетом экономического содержания исследуемого показателя.
2.2. Виды средних величин и способы их вычисления
Рассмотрим теперь виды средних величин, особенности их исчисления и области применения. Средние величины делятся на два больших класса: степенные средние, структурные средние.
К степенным средним относятся такие наиболее известные и часто применяемые виды, как средняя геометрическая, средняя арифметическая и средняя квадратическая.
В качествеструктурных средних рассматриваются мода и медиана.
Остановимся на степенных средних. Степенные средние в зависимости от представления исходных данных могут быть простыми и взвешенными. Простая средняя считается по не сгруппированным данным и имеет следующий общий вид:
,где Xi – варианта (значение) усредняемого признака;
m – показатель степени средней;
n – число вариант.
Взвешенная средняя считается по сгруппированным данным и имеет общий вид
,где Xi – варианта (значение) усредняемого признака или серединное значение интервала, в котором измеряется варианта;
m – показатель степени средней;
fi – частота, показывающая, сколько раз встречается i-e значение усредняемого признака.
Общие формулы расчета степенных средних имеют показатель степени (m). В зависимости от того, какое значение он принимает, различают следующие виды степенных средних:
средняя гармоническая, если m = -1;
средняя геометрическая, если m –> 0;
средняя арифметическая, если m = 1;
средняя квадратическая, если m = 2;
средняя кубическая, если m = 3.
Если рассчитать все виды средних для одних и тех же исходных данных, то значения их окажутся неодинаковыми. Здесь действует правило мажорантности средних: с увеличением показателя степени m увеличивается и соответствующая средняя величина:
В статистической практике чаще, чем остальные виды средних взвешенных, используются средние арифметические и средние гармонические взвешенные.
Средняя гармоническая имеет более сложную конструкцию, чем средняя арифметическая. Среднюю гармоническую применяют для расчетов тогда, когда в качестве весов используются не единицы совокупности – носители признака, а произведения этих единиц на значения признака (т.е. m = Xf). К средней гармонической простой следует прибегать в случаях определения, например, средних затрат труда, времени, материалов на единицу продукции, на одну деталь по двум (трем, четырем и т.д.) предприятиям, рабочим, занятым изготовлением одного и того же вида продукции, одной и той же детали, изделия.
Главное требование к формуле расчета среднего значения заключается в том, чтобы все этапы расчета имели реальное содержательное обоснование; полученное среднее значение должно заменить индивидуальные значения признака у каждого объекта без нарушения связи индивидуальных и сводных показателей. Иначе говоря, средняя величина должна исчисляться так, чтобы при замене каждого индивидуального значения усредняемого показателя его средней величиной оставался без изменения некоторый итоговый сводный показатель, связанный тем или другим образом с усредняемым . Этот итоговый показатель называется определяющим, поскольку характер его взаимосвязи с индивидуальными значениями определяет конкретную формулу расчета средней величины. Покажем это правило на примере средней геометрической.
Формула средней геометрической
используется чаще всего при расчете среднего значения по индивидуальным относительным величинам динамики.
Средняя геометрическая применяется, если задана последовательность цепных относительных величин динамики, указывающих, например, на рост объема производства по сравнению с уровнем предыдущего года: i1, i2, i3,..., in. Очевидно, что объем производства в последнем году определяется начальным его уровнем (q0) и последующим наращиванием по годам:
qn=q0× i1× i2×...×in.
Приняв qn в качестве определяющего показателя и заменяя индивидуальные значения показателей динамики средними, приходим к соотношению
Отсюда
Особый вид средних величин – структурные средние, которые применяется для изучения внутреннего строения рядов распределения значений признака, а также для оценки средней величины (степенного типа), если по имеющимся статистическим данным ее расчет не может быть выполнен (например, если бы в рассмотренном примере отсутствовали данные и об объеме производства, и о сумме затрат по группам предприятий).
В качестве структурных средних чаще всего используют показатели моды – наиболее часто повторяющегося значения признака – и медианы – величины признака, которая делит упорядоченную последовательность его значений на две равные по численности части. В итоге у одной половины единиц совокупности значение признака не превышает медианного уровня, а у другой – не меньше его.
Если изучаемый признак имеет дискретные значения, то особых сложностей при расчете моды и медианы не бывает. Если же данные о значениях признака Х представлены в виде упорядоченных интервалов его изменения (интервальных рядов), расчет моды и медианы несколько усложняется. Поскольку медианное значение делит всю совокупность на две равные по численности части, оно оказывается в каком-то из интервалов признака X. С помощью интерполяции в этом медианном интервале находят значение медианы:
,где XMe – нижняя граница медианного интервала;
hMe – его величина;
(Sum m)/2 – половина от общего числа наблюдений или половина объема того показателя, который используется в качестве взвешивающего в формулах расчета средней величины (в абсолютном или относительном выражении);
SMe-1 – сумма наблюдений (или объема взвешивающего признака), накопленная до начала медианного интервала;
mMe – число наблюдений или объем взвешивающего признака в медианном интервале (также в абсолютном либо относительном выражении).
При расчете модального значения признака по данным интервального ряда надо обращать внимание на то, чтобы интервалы были одинаковыми, поскольку от этого зависит показатель повторяемости значений признака X. Для интервального ряда с равными интервалами величина моды определяется как
,где ХMo – нижнее значение модального интервала;
mMo – число наблюдений или объем взвешивающего признака в модальном интервале (в абсолютном либо относительном выражении);
mMo-1 – то же для интервала, предшествующего модальному;
mMo+1 – то же для интервала, следующего за модальным;
h – величина интервала изменения признака в группах.
Глава 3. Расчётная часть.
Задание 1
№1. Построить интервальный вариационный ряд распределения.
1. n=1+3,332
=1+3,322 =82. Величину интервала определяю по формуле h=
= = 103. xmin=8=>b1=8+10=18=>
[8;18); f1=5
[18; 28); f2=12
[28; 38); f3=16
[38; 48); f4=32
[48;58);f5=14
[58;68); f6=11
[68;78);f7=6
[78;88]f8=4
4.
Объем реализации xi | Число фирм fi |
8-18 | 5 |
18-28 | 12 |
28-38 | 16 |
38-48 | 32 |
48-58 | 14 |
58-68 | 11 |
68-78 | 6 |
78-88 | 4 |
Итого: | 100 |
№2. Дать графическое изображение ряда.
Объем реализации xi | Число фирм fi | Накопленная частота Fi |
8-18 | 5 | 5 |
18-28 | 12 | 17 |
28-38 | 16 | 33 |
38-48 | 32 | 65 |
48-58 | 14 | 79 |
58-68 | 11 | 90 |
68-78 | 6 | 96 |
78-88 | 4 | 100 |
Итого: | 100 | - |
Гистограмма
Кумулята