Задача № 2
По данным варианта определить:
1. Показатели динамики с постоянной и переменной базой сравнения.
2. Графически изобразить ряд динамики в зависимости от номера варианта.
3. Рассчитать среднегодовые показатели динамики.
4. Произвести сглаживание ряда методом 3-х летней скользящей средней.
5. Выровнять ряд по прямой.
6. Построить графики исходного и выровненных рядов.
7. Использовать полученное уравнение для экстраполяции уровней на 2008 год.
8. Сделать выводы.
№ варианта | Годы | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
3 | Мощность эл. станций, млн. кВт | 115,0 | 166,1 | 217,5 | 266,7 | 315,1 | 338,9 | 341,4 |
Варианты графиков:
полосовая диаграмма
Решение
Абсолютный прирост | Темп роста | Темп прироста | Абсолютное значение 1% прироста, Аi | |||||
Год | Мощность эл. станций, млн. кВт | Базисный | Цепной | Базисный | Цепной | Базисный | Цепной | |
∆yб | ∆yц | Трб | Трц | Тпрб | Тпрц | |||
1997 | 115 | |||||||
1998 | 166,1 | 51,1 | 51,1 | 1,444 | 1,444 | 44,4 | 44,4 | 1,15 |
1999 | 217,5 | 102,5 | 51,4 | 1,891 | 1,309 | 89,1 | 30,9 | 1,66 |
2000 | 266,7 | 151,7 | 49,2 | 2,319 | 1,226 | 131,9 | 22,6 | 2,18 |
2001 | 315,1 | 200,1 | 48,4 | 2,740 | 1,181 | 174,0 | 18,1 | 2,67 |
2002 | 338,9 | 223,9 | 23,8 | 2,947 | 1,076 | 194,7 | 7,6 | 3,15 |
2003 | 341,4 | 226,4 | 2,5 | 2,969 | 1,007 | 196,9 | 0,7 | 3,39 |
Абсолютный прирост
Базисный
∆yб=yI–y1
∆yб=166,1-115=51 млн. кВт.
Цепной
∆yц=yI–yI-1
∆yц=166,1-115=51 млн. кВт.
Темп роста
Базисный
Трб=yi/y1
Трб=166,1/115=1.444
Цепной
Трц=yi/yi-1
Трц=166,1/115=1.444
Темп прироста
Базисный
Тпрб=Трб*100%-100%
Тпрб=1,444*100%-100%=44,4%
Цепной
Тпрц=Трц*100%-100%
Тпрц=1,444*100%-100%=44,4%
Абсолютное значение 1% прироста
АI=∆yц/Тпрц
АI=51,1/44,4=1,15 млн. кВт.
2) Среднегодовая мощность электростанций
Yср=(∑YI)/n
Yср=(115+166,1+217,5+266,7+315,1+338,9+341,4)/7=251,53 млн. кВт.
3) Среднегодовой абсолютный прирост
∆y=(∑∆yI)/(n-1)
∆y=(51,1+51,4+49,2+48,4+23,8+2,5)/6=37,73 млн. кВт.
Среднегодовой темп роста
Т р ср= n-1√(Yn/Y1)
Т р ср=
=1.199Среднегодовой темп прироста
Тпр ср=100%* Т р ср-100%
Тпр ср=100%*1,199-100%=19,9%
Произвести сглаживание ряда методом 3-х летней скользящей средней.
годы | выпуск продукции за три года | значение средней | |
1997 | 115 | ||
1998 | 166,1 | 498,6 | 166,20 |
1999 | 217,5 | 650,3 | 216,77 |
2000 | 266,7 | 799,3 | 266,43 |
2001 | 315,1 | 920,7 | 306,90 |
2002 | 338,9 | 995,4 | 331,80 |
2003 | 341,4 |
Выровнять ряд по прямой
Уравнение прямой линии выражено формулой
Y=a0+a1t
Для нахождения параметров уравнения необходимо решить систему уравнений
Для упрощения расчетов выбираем t так чтобы
Тогда
a0=
a1=составим расчетную таблицу
годы | условные годы, t | t2 | yt | |
1997 | 115 | -3 | 9 | -345 |
1998 | 166,1 | -2 | 4 | -332,2 |
1999 | 217,5 | -1 | 1 | -217,5 |
2000 | 266,7 | 0 | 0 | 0 |
2001 | 315,1 | 1 | 1 | 315,1 |
2002 | 338,9 | 2 | 4 | 677,8 |
2003 | 341,4 | 3 | 9 | 1024,2 |
сумма | 1760,7 | 0 | 28 | 1122,4 |
a0=
251,53 a1= 40,09y=251,53+40,09t
найдем значение y в 2006 году (t=6)
y=251,53+40,09*6=492,04 млн. кВт.
В период с 1997 года по 2003 год мощность электростанций выросла на 226,4 млн. кВт. или на 196,9%, среднегодовой прирост составил 37,73 млн. кВт. или 19,9%. Используя экстраполяцию по прямой расчетное значение мощности электростанций в 2006 году составит 492,04 млн. кВт.
Задача № 3
Имеются следующие данные о производстве продукции за смену:
Группы рабочих по количеству произведенной продукции за смену, шт. | Число рабочих |
До 5 | 10 |
5-7 | 30 |
7-9 | 40 |
9-11 | 15 |
Свыше 11 | 5 |
Итого | 100 |
Определите среднюю выработку продукции за смену.
Решение.
Для расчета средней воспользуемся формулой средней взвешенной
, где xi – середина i-го интервала.Для первого интервала
Х1=5-
=4Для пятого интервала
Х5=11+
=12 =7,5 шт.Задача № 4
Динамика себестоимости и объема производства продукции характеризуется следующими данными:
Продукция | Выработано продукции, тыс. ед. | Себестоимость единицы продук-ции, тыс. руб. | ||
базисныйпериод | отчетныйпериод | базисныйпериод | отчетный период | |
Завод № 1КД – 5КО - 3 | 2510 | 2512 | 5090 | 5888 |
Завод № 2КД – 5 | 40 | 45 | 70 | 75 |
На основании имеющихся данных вычислить:
1. для завода № 1 (по двум видам продукции в целом):
· общий индекс затрат на производство продукции;
· общий индекс себестоимости продукции;
· общий индекс физического объема производства продукции.
Определить в отчетном периоде по сравнению с базисным абсолютное изменение суммы затрат на производство продукции и разложить его по факторам (за счет изменения себестоимости и объема выработанной продукции). Показать взаимосвязь между исчисленными индексами.
2. для двух заводов в целом (по продукции КД – 5):
· индекс себестоимости переменного состава;
· индекс себестоимости постоянного состава;
· индекс влияния изменения структуры производства продукции на динамику средней себестоимости.
Объяснить различия между полученными величинами индексов.
Определить общее абсолютное изменение средней себестоимости единицы продукции в отчетном периоде по сравнению с базисным и разложить его по факторам: за счет непосредственного изменения уровней себестоимости и изменения структуры производства продукции. Сформулировать выводы.
Решение.
1) для завода №1
а) общий индекс затрат на производство
Izq=
z1,z0 – себестоимость продукции в отчетном и базисном периодах, соответственно
q1,q0 – объем продукции в отчетном и базисном периодах, соответственно
Izq=
б) общий индекс себестоимости продукции
Iz=
Ip=
В) общий индекс физического объема
Iq=
Iq=
Взаимосвязь индексов
Izp=IzIq
1.166=1.076*1.084=1.166
Абсолютное изменение суммы затрат в отчетном периоде по сравнению с базисным
Δzq=
– =2506-2150=356 млн. руб.В том числе за счет изменения себестоимости
Δz=
– =2506-2330=176млн. руб.