Смекни!
smekni.com

Статистические методы анализа уровня, структуры и динамики цен на продукцию и услуги 2 (стр. 7 из 9)

Таблица 3.1 – Результаты регрессионного анализа факторов Х1, Х2, Х3

Коэффициенты
Y-пересечение -4472,921362
Заработная плата работников, Х1 1,373900722
Численность работников, X2 -0,040920982
Оборот розничной торговли на душу населения, Х3 0,15324022

Построим уравнение множественной регрессии:

Известно, что коэффициент регрессии показывает среднее изменение результативного признака с изменением на 1 единицу своего измерения данного фактора при условии постоянства всех остальных.

Таким образом, коэффициент регрессии:

· при Х1 показывает, что с увеличением заработной платы работников на 1 руб. объём платных услуг на душу населения увеличится на 1,37 руб., при фиксированном значении остальных факторов.

· при Х2 показывает, что с увеличением численности работников на 1 человека объём платных услуг на душу населения уменьшится на 0,04 руб., при фиксированном значении остальных факторов.

· при Х3 показывает, что с увеличением оборота розничной торговли на душу населения на 1 руб. объём платных услуг на душу населения увеличится на 0,15 руб., при фиксированном значении остальных факторов.

Другими словами это означает, что величина объёма платных услуг на душу населения в среднем по совокупности увеличивалась на 1,37 руб. при увеличении заработной платы работников на 1 руб., уменьшалась в среднем на 0,04 руб. при возрастании численности работников на 1 человека и увеличивалась на 0,15 руб. при росте оборота розничной торговли на душу населения на 1 руб.

2. Дадим сравнительную оценку силы связи факторов с результатом с помощью средних коэффициентов эластичности.

Рассчитаем средние коэффициенты эластичности по формуле:

Средние значения признаков получим с помощью инструмента анализа данных Описательная статистика (таблица 3.2).

Таблица 3.2 – Средние значения признаков

У Х1 Х2 Х3
Среднее 4876,374 Среднее 5682,511 Среднее 12278,23 Среднее 13341,98

Результаты вычисления соответствующих показателей для каждого признака:

По значениям средних коэффициентов эластичности можно сделать вывод о более сильном влиянии на результат у признаков фактора х1, чем признаков факторов х2, х3.

Проинтерпретировав средний коэффициент эластичности

, получаем, что с увеличением заработной платы работников на 1 руб. объём платных услуг на душу населения увеличится на 1,6% , при условии, что другие факторы остаются постоянными.

Проинтерпретировав средний коэффициент эластичности

, получаем, что с увеличением численности работников на 1 человека объём платных услуг на душу населения уменьшится на 0,1%, при условии, что другие факторы остаются постоянными.

Проинтерпретировав средний коэффициент эластичности

, получаем, что с увеличением оборота розничной торговли на душу населения на 1 руб. объём платных услуг на душу населения увеличится на 0,4%, при условии, что другие факторы остаются постоянными.

3. Оценим с помощью F-критерия Фишера-Снедекора значимость уравнения линейной регрессии и показателя тесноты связи.

Оценку надежности уравнения регрессии в целом и показатели тесноты связи

дает F-критерий Фишера:

Для проверки значимости уравнения выдвигаем две гипотезы:

H0: уравнение регрессии является статистически не значимым.

H1: уравнение регрессии является статистически значимым.

Таблица 3.3 – Дисперсионный анализ данных

df SS MS F Значимость F
Регрессия 3 5,78E+08 1,93E+08 75,35834 3,69E-17
Остаток 43 1,1E+08 2554841
Итого 46 6,87E+08

По данным таблицы дисперсионного анализа Fфакт. =75,36. Вероятность случайно получить такое значение F-критерия составляет 3,69Е-17, что не превышает допустимый уровень значимости 5 %, об этом свидетельствует величина P- значение из этой же таблицы. Следовательно, полученное значение не случайно, оно сформировалось под влиянием существенных факторов, т.е. подтверждается статистическая значимость всего уравнения и показателя тесноты связи

.

4. Оценим статистическую значимость коэффициентов регрессии с помощью t-критерия Стьюдента.

Выдвигаем две гипотезы:

H0: коэффициенты регрессии является статистически не значимыми, т.е. равны 0.

H1: коэффициенты регрессии является статистически значимыми, т.е. отличны от 0.

Таблица 3.4 – Результаты регрессионного анализа факторов Х1, Х2, Х3

Стандартная ошибка t-статистика
Y-пересечение 761,5746 -5,87325
Заработная плата работников, Х1 0,134205 10,2373
Численность работников, X2 0,022423 -1,82499
Оборот розничной торговли на душу населения, Х3 0,046465 3,297959

Значения случайных ошибок параметров b1, b2, b3c учетом округления (таблица 3.4):

Если значения t-критерия больше 2,09, можно сделать вывод о существенности параметра, который формируется под воздействием неслучайных причин.

параметр b статистически значим;

параметр b статистически не значим;

параметр b статистически значим.

5. Оценим качество уравнения через среднюю ошибку аппроксимации.

Рассчитаем среднюю ошибку аппроксимации по формуле средней арифметической простой:

Но для этого еще найдем:

Получим:

Таким образом, фактические значения результативного признака отличаются от теоретических значений на 33,1 %. Следовательно, построенная модель является удовлетворительной.

6. Рассчитаем матрицу парных коэффициентов корреляции и отберем информативные факторы в модели. Укажем коллинеарные факторы.

Значения линейных коэффициентов парной корреляции определяют тесноту попарно связанных переменных, использованных в данном уравнении множественной регрессии.

Таблица 3.5 – Матрица коэффициентов парной корреляции

Y Х1 X2 Х3
Y 1
Х1 0,886194 1
X2 0,590571 0,553515 1
Х3 0,670447 0,564597 0,903082 1

Из таблицы 3.5 можно заметить, что факторы x2 и x3 мультиколлинеарны, т.к. коэффициенты корреляции превышают 0,75. Таким образом, можно сказать, что они дублируют друг друга.

При отборе факторов в модель предпочтение отдается фактору, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами. В нашем примере получаем, информативными факторами являются: x1 и x3.

7. Построим модель в естественной форме только с информативными факторами и оценим ее параметры:

Построим уравнение множественной линейной регрессии следующего вида:

Коэффициенты возьмём из таблицы 3.6:

Таблица 3.6 – Результаты регрессионного анализа факторов Х1, Х3,

Коэффициенты
Y-пересечение -3832,012418
Заработная плата работников, Х1 1,343748976
Оборот розничной торговли на душу населения, Х3 0,080386804

Получаем уравнение следующего вида:

Оно показывает, что при увеличении заработной платы работников на 1 руб. объём платных услуг на душу населения увеличивается на 1,34 руб., при увеличении оборота розничной торговли на душу населения на 1 руб. объём платных услуг на душу населения увеличивается на 0,08 руб.

Уравнение в целом, а также его параметры являются статистически значимыми.

8. Построим модель в стандартизированном масштабе и проинтерпретируем её параметры.