Смекни!
smekni.com

Анализ рядов динамики (стр. 2 из 2)

4.При относительно стабильных темпах роста показательную функцию.

Для аналитического выравнивания наиболее часто используются следующие виды трендовых моделей: прямая (линейная), парабола второго порядка, показательная (логарифмическая) кривая, гиперболическая.

Целью аналитического выравнивания является - определение аналитической или графической зависимости. На практике, по имеющемуся временному ряду, задают вид и находят параметры функции, а затем анализируют поведение отклонений от тенденции. Не следует смешивать выравнивание статистических рядов динамики со сглаживанием статистических рядов.

Одним из наиболее элементарных способов изучения общей тенденции в ряду динамики является укрупнение интервалов. При использовании этого метода ряд динамики, состоящий из мелких интервалов, заменяется рядом, состоящим из более крупных интервалов (например, преобразование месячных периодов в квартальные, квартальных в годовые и т.д.). Или уровни исходного динамического ряда объединяются по более крупным периодам. Особое внимание при этом следует обращать на обоснование периодов укрупнения.

Так как на каждый уровень исходного ряда влияют факторы, вызывающие их разнонаправленное изменение, то это мешает видеть основную тенденцию. При укрупнении интервалов влияние факторов нивелируется, и основная тенденция проявляется более отчетливо. Расчет среднего значения уровня по укрупненному интервалу осуществляется по формуле простой средней арифметической. Недостаток этого способа заключается в том, что сокращается число уровней ряда, а это не позволяет учитывать изменения внутри укрупненного интервала. Но преимущество в том, что сохраняется природа явления.