Смекни!
smekni.com

по Статистика предприятия (стр. 4 из 6)

В зависимости от базы сравнения индексы бывают базисными и цепными.

В системе базисных индексов сравнения уровней индексируемого показателя в каждом индексе производится с уровнем базисного периода, а в системе цепных индексов уровни индексируемого показателя сопоставляются с уровнем предыдущего периода.

Цепные и базисные индексы могут быть как индивидуальные, так и общие.

Ряды индивидуальных индексов просты по построению. Так, например, обозначив четыре последовательных периода подстрочными значениями 0, 1,2, 3, исчисляем базисные и цепные индивидуальные индексы цен:

базисные индексы:

;
;
;

цепные индексы:

;
;
.

Между цепными и базисными индивидуальными индексами существует взаимосвязь, позволяющая переходить от одних индексов к другим — произведение последовательных цепных индивидуальных индексов дает базисный индекс последнего периода:

.

Отношение базисного индекса отчетного периода к базисному индексу предшествующего периода дает цепной индекс отчетного периода:

;
.

Это правило позволяет применять так называемый цепной метод, т.е. находить неизвестный ряд базисных индексов по известным цепным и наоборот.

Рассмотрим возможность применения цепного метода исчисления для агрегатных индексов.

Как известно, в каждом отдельном индексе веса в его числителе и знаменателе обязательно фиксируются на одном и том же уровне.

Если же строится ряд индексов, то веса в нем могут быть либо постоянными для всех индексов ряда, либо переменными.

Рассмотрим построение базисных и цепных индексов на примере агрегатных индексов цен и физического объема продукции.

Базисные индексы:

•индексы цен Пааше (с переменными весами):

;
; …;
;

•индексы цен Ласпейреса (с постоянными весами):

;
; …;
;

•индексы физического объема продукции (с постоянными весами):

;
; …;
.

Цепные индексы:

индексы цен Пааше (с переменными весами):

;
; …;
;

индексы цен Ласпейреса (с постоянными весами):

;
; …;
;

индексы физического объема продукции (с постоянными весами):

;
; …;
.

Итак, в базисных агрегатных индексах все отчетные данные сопоставляются только с базисными (закрепленными) данными, а в цепных — с предыдущими (в данном случае — смежными) данными.

Период весов во всех индексах цен Пааше взят текущий (индексы с переменными весами), в индексах физического объема и индексах цен Ласпейреса — закрепленный (индексы с постоянными весами).

Постоянные веса (не меняющиеся при переходе от одного индекса к другому) позволяют исключить влияние изменения структуры на значение индекса.

Ряды агрегатных индексов с постоянными весами имеют преимущество — сохраняется взаимосвязь между цепными и базисными индексами, например, в ряду агрегатных индексов физического объема:

,

или в ряду агрегатных индексов цен Ласпейреса:

.

Таким образом, использование постоянных весов в течение ряда лет позволяет переходить от цепных общих индексов к базисным и наоборот.

В рядах агрегатных индексов качественных показателей, которые строятся с переменными весами (например, ряд цен Пааше), перемножение цепных индексов не дает базисный:

.

Для таких индексов переход от цепных индексов к базисным (и наоборот) невозможен. Вместе с тем, в статистической практике часто возникает необходимость определения динамики цен за длительный период времени на основе цепных индексов цен с переменными весами. Тогда для получения приближенного базисного (итогового) индекса цепные индексы цен перемножают, заведомо зная, что в таком расчете допускается ошибка. Отдельные индексы этого ряда используются для пересчета стоимостных показателей отчетного периода в ценах предыдущего года. Основные формулы для расчета общих индексов приведены в таблице 1.

Основные формулы начисления общих индексов.

Наименование индекса Формула расчёта индексов
Индивидуальный индекс Агрегатный индекс Средний индекс
Индекс физического объёма продукции в ценах базисного периода
в ценах отчётного периода
Индекс цен с базисными весами (формула Ласпейреса)
С отчётными весами (формула Паше)
Индекс стоимости продукции (товарооборота)
Индекс себестоимости продукции
Индекс издержек производства
Индексы производительности труда

Задача 1.

Известны результаты обследования группы водителей автобусов за месяц

Табельный номер

Класс водителя

Процент выполнения нормы выработки

Месячная зарплата, руб.

Табельный номер

Класс водителя

Процент выполнения нормы выработки

Месячная зарплата, руб.

1

I

105,2

280,8

13

II

104,8

160,8

2

II

102,3

180,3

14

II

110,5

190,0

3

I

106,8

207,0

15

III

109,7

181,0

4

III

100,0

150,0

16

I

108,3

235,0

5

II

113,5

210,5

17

III

112,0

175,0

6

I

100,7

210,4

18

II

100,8

165,0

7

III

110,2

180,0

19

III

100,0

148,0

8

III

117,2

210,0

20

I

112,0

230,0

9

II

119,7

230,2

21

II

114,1

200,0

10

III

115,0

200,0

22

III

106,3

179,0

11

I

115,2

240,9

23

II

107,8

170,0

12

III

104,2

162,0

24

I

104,8

218,7

Построить комбинационную таблицу, отражающую зависимость заработной платы водителей автобусов от их квалификации и процента выполнения норм выработки