Смекни!
smekni.com

Факторный метод анализа (стр. 2 из 2)

Факторы имеют две характеристики: объём объясняемой дисперсии и нагрузки. Если рассматривать их с точки зрения геометрической аналогии, то касательно первой отметим, что фактор, лежащий вдоль оси ОХ, может максимально объяснять 70 % дисперсии (первый главный фактор), фактор, лежащий вдоль оси ОУ, способен детерминировать не более 30 % (второй главный фактор). То есть в идеальной ситуации вся дисперсия может быть объяснена двумя главными факторами с указанными долями[4]. В обычной ситуации может наблюдаться два или более главных факторов, а также остаётся часть неинтерпретируемой дисперсии (геометрические искажения), исключаемая из анализа по причине незначимости. Нагрузки, опять же с точки зрения геометрии, есть проекции от точек на оси ОХ и ОУ (при трёх- и более факторной структуре также на ось ОZ). Проекции — это коэффициенты корреляции, точки — наблюдения, таким образом, факторные нагрузки являются мерами связи. Так как сильной считается корреляция с коэффициентом Пирсона R ≥ 0,7, то в нагрузках нужно уделять внимание только сильным связям. Факторные нагрузки могут обладать свойством биполярности — наличием положительных и отрицательных показателей в одном факторе. Если биполярность присутствует, то показатели, входящие в состав фактора, дихотомичны и находятся в противоположных координатах.

Методы факторного анализа:

  • метод главных компонент
  • корреляционный анализ
  • метод максимального правдоподобия

Список литературы:

1. Индивидуальные различия. Колин Купер. Москва, Аспект Пресс, 2000 г., 527 стр.

  1. Измерение в психологии. А. Н. Гусев, Ч. А. Измайлов, М. Б. Михалевская. Москва, Смысл, 1997 г., 287 стр.
  2. Факторный анализ для психологов. О. В. Митина, И. Б. Михайловская. Москва, Учебно-методический коллектор Психология, 2001 г, 169 стр.
  3. Статистический анализ: подход с применением ЭВМ. А. Афифи, С. Эйзен. Москва, Мир, 1982 г., 488 стр.
  4. Факторный, дискриминантный и кластерный анализ, сборник работ под ред. Енюкова И. С. Москва, Финансы и статистика, 1989, 215 стр.
  5. SPSS для социологов. Пациорковский В. В., Пациорковская В. В. Учебное пособие ИСЭПН РАН, Москва, 2005, 433 стр.
  6. SPSS: Искусство обработки информации. Анализ статистических данных и восстановление скрытых закономерностей. Бююль А., Цёфель П. СПб., ООО «ДиаСофтЮП», 2002, 603 стр.
  7. Электронный учебник по статистике. Москва, StatSoft. WEB: www.statsoft.ru/home/textbook/default.htm.