Можно выделить три основных класса моделей, которые применяются для анализа и прогнозирования экономических процессов:
1. модели временных рядов,
2. регрессионные модели с одним уравнением,
3. системы одновременных уравнений.
Модель с одной объясняющей и одной объясняемой переменными – модель парной регрессии. Если объясняющих (факторных) переменных используется две или более, то говорят об использовании модели множественной регрессии. При этом, в качестве вариантов могут быть выбраны линейная, экспоненциальная, гиперболическая, показательная и другие виды функций, связывающие эти переменные.
Линейная регрессия представляет собой линейную функцию между условным математическим ожиданием
зависимой переменной Y и одной объясняющей переменной X: ,где
- значения независимой переменной в i-ом наблюбдении, i=1,2,…,n. Принципиальной является линейность уравнения по параметрам , . Так как каждое индивидуальное значение отклоняется от соответствующего условного математического ожидания, тогда вданную формулу необходимо ввести случайное слагаемое , тогда получим:Данное соотношение называется теоретической линейной регрессионной моделью, а
и - теоретическими параметрами (теоретическими коэффициентами) регрессии, - случайным отклонением. Следовательно, индивидуальные значения представляются в виде суммы двух компонент – систематической и случайной [12]Для определения значений теоретических коэффициентов регрессии необходимо знать и использовать все значения переменных Xи Y генеральной совокупности, что невозможно. задачи регрессионного линейного анализа состоят в том, чтобы по имеющимся статистическим данным (
), i=1,…,nдля переменных Xи Y:1. получить наилучшие оценки неизвестных параметров
и ;2. проверить статистические гипотезы о параметрах модели;
3. проверить, достаточно ли хорошо модель согласуется со статистическими данными.
Парная линейная регрессия - это причинная модель статистической связи линейной между двумя количественными переменными «x» и «у», представленная уравнением
, где х - переменная независимая, y - переменная зависимая. Коэффициент регрессии «b» и свободный член уравнения регрессии «a» вычисляются по формулам: ,где r - коэффициент линейной корреляции Пирсона для переменных x и y; sx и sy - стандартные отклонения для переменных x и y; x,y - средние арифметические для переменных x и y.
Существуют два подхода к интерпретации коэффициента регрессии b. Согласно первому из них, b представляет собой величину, на которую изменяется предсказанное по модели значение ŷi = a + bxi при увеличении значения независимой переменной x на одну единицу измерения, согласно второй - величину, на которую в среднем изменяется значение переменной yi при увеличении независимой переменной x на единицу. На диаграмме рассеяния коэффициент b представляет тангенс угла наклона линии регрессии y = a + bx к оси абсцисс. Знак коэффициента регрессии совпадает со знаком коэффициента линейной корреляции: значение b>0 свидетельствует о прямой линейной связи, значение b < 0 - об обратной. Если b = 0, линейная связь между переменными отсутствует (линия регрессии параллельна оси абсцисс).
Свободный член уравнения регрессии a интерпретируется, если для независимой переменной значение x = 0 имеет смысл. В этом случае y = a, если x = 0. Качество (объясняющая способность) уравнения парной линейной регрессии оценивается с помощью коэффициента детерминации.
После построения уравнения регрессии необходима интерпретация и анализ, а также словесное описание полученных результатов с трактовкой найденных коэффициентов.
На любой экономический показатель чаще всего оказывает влияние не один, а несколько факторов. В этом случае вместо парной регрессии рассматривается множественная. В общем случае в регрессионный анализ вовлекаются несколько независимых переменных. Это, конечно же, наносит ущерб наглядности получаемых результатов, так как подобные множественные связи в конце концов становится невозможно представить графически. Переменные, объявленные независимыми, могут сами коррелировать между собой; этот факт необходимо обязательно учитывать при определении коэффициентов уравнения регрессии для того, чтобы избежать ложных корреляций.
Заданием множественного регрессионного анализа является построение такого уравнения прямой k-мерном пространстве, отклонение результатов наблюдений
от которой были бы минимальными. Используя для этого метод наименьших квадратов, получается система нормальных уравнений, которую можно представить и в матричной форме.Множественная линейная регрессия - причинная модель статистической связи линейной между переменной зависимой y и переменными независимыми x1,x2,...,xk, представленная уравнением y = b1x1 + b2x2 + ... + bkxk + a = ∑ bixi + a . Коэффициенты b1,b2,...,bk называются нестандартизированными коэффициентами, а - свободным членом уравнения регрессии. Уравнение регрессии существует также в стандартизированном виде, когда вместо исходных переменных используются их z-оценки: zy = ∑ βizi. Здесь zy - z-оценка переменной у; z1,z2,...,zk - z-оценки переменных x1,x2,...,xk; β1,β2,...,βk - стандартизированные коэффициенты регрессии (свободный член отсутствует).
Для того чтобы найти стандартизированные коэффициенты, необходимо решить систему линейных уравнений:
β1 + r12β2 + r13β3 + ... + r1kβk = r1y,
r21β1 + β2 + r23β3 + ... + r2kβk = r2y,
r31β1 + r32β2 + β3 + ... + r3kβk = r3y,
...
rk1β1 + rk2β2 + rk3β3 + ... + βk = rky,
в которой rij - коэффициенты линейной корреляции Пирсона для переменных xi и xj; riy - коэффициент корреляции Пирсона для переменных xi и y. [8]
Нестандартизированные коэффициенты регрессии вычисляются по формуле bi = βi ∙ sy / si, где sy - стандартное отклонение переменной y; si - стандартное отклонение переменной хi. Свободный член уравнения регрессии находится по формуле a = y - ∑ bixi, где y - среднее арифметическое переменной y, xi - средние арифметические для переменных xi.
В настоящее время используются два подхода к интерпретации нестандартизированных коэффициентов линейной регрессии bi. Согласно первому из них, bi представляет собой величину, на которую изменится предсказанное по модели значение ŷ = ∑ bixi при увеличении значения независимой переменной xi на единицу измерения; согласно второму - величину, на которую в среднем изменяется значение переменной y при увеличении независимой переменной xi на единицу. Значения коэффициентов bi существенно зависят от масштаба шкал, по которым измеряются переменные y и xi, поэтому по ним нельзя судить о степени влияния независимых переменных на зависимую. Свободный член уравнения регрессии a равен предсказанному значению зависимой переменной ŷ в случае, когда все независимые переменные xi = 0. [8]
Стандартизированные коэффициенты βi являются показателями степени влияния независимых переменных xi на зависимую переменную y. Они интерпретируются как "вклад" соответствующей независимой переменной в дисперсию (изменчивость) зависимой переменной.
Качество (объясняющая способность) уравнения множественной линейной регрессии измеряется коэффициентом множественной детерминации, который равен квадрату коэффициента корреляции множественной R².