Смекни!
smekni.com

Статистический анализ рядов распределения (стр. 2 из 3)

Для построения таблицы вариационного ряда выбираем следующий путь: меню Statistics/Basic Statistic Tables. Впоявившемсядиалоговомокневыбираемпункт Frequency tables. Выбрав переменную, содержащую ранжированный ряд с учетом выбросов, переходим на закладку Advanced. Задаем параметры построения таблицы. Нажимаем кнопку Summary, и появляется расчетная таблица частот (см.Табл.1.4).

Табл.1.4

Рассчитанная таблица частот с интервалом 10 (k = 10)

Далее представлены таблицы вариационного ряда, построенные с использованием разного числа интервалов (k = 15, k = 5 и k = 8).

Табл.1.5

Рассчитанная таблица частот с интервалом 15 (k = 15)

Табл.1.6

Рассчитанная таблица частот с интервалом 5 (k = 5)

Табл.1.7

Рассчитанная таблица частот с интервалом 8 (k = 8)

Для графического представления рядов распределения используются, в основном, три вида графиков:

1. Полигон распределения.

2. Гистограмма распределения.

3. Кумулята распределения.

Наряду с этим, STATISTICA дает возможность получать графические представления эмпирического распределения, широко используемые в зарубежной статистической литературе, как учебной, так и профессиональной. Речьидетографиках Box-and- Whisker Plot, Hanging Bars.

Гистограмма (или столбиковая диаграмма) строится только для интервальных вариационных рядов. Основаниями столбиков гистограммы, являются интервалы значений варьирующего признака, а высота столбиков соответствует частоте каждого интервала.

Для построения гистограммы удобно воспользоваться кнопкой Histograms на закладке Advanced меню Frequency Tables, которым мы пользовались для построения таблиц. При этом условия построения гистограмм должны полностью соответствовать условиям построения таблиц.

На построенных графиках (рис. 1.1, 1.2, 1.3, 1.4) помимо гистограммы нанесена кривая нормального распределения (обозначена красным цветом).

Гистограмма регионов России по значению показателя «Число собственных легковых автомобилей на 1000 человек» в 2005 г. с наложенными на них кривыми нормального распределения: с числом интервалов k = 10

Рис. 1.1

Гистограмма регионов России по значению показателя «Число собственных легковых автомобилей на 1000 человек» в 2005 г. с наложенными на них кривыми нормального распределения: с числом интервалов k = 15

Рис. 1.2

Гистограмма регионов России по значению показателя «Число собственных легковых автомобилей на 1000 человек» в 2005 г. с наложенными на них кривыми нормального распределения: с числом интервалов k = 5

Рис. 1.3

Гистограмма регионов России по значению показателя «Число собственных легковых автомобилей на 1000 человек» в 2005 г. с наложенными на них кривыми нормального распределения: с числом интервалов k = 8

Рис. 1.4

При k = 10 получено много малонаполненных групп, наблюдаются две вершины и получается плосковершинное распределение (равные частоты в двух группах). Такой интервал нам не подходит.

При k = 15 получено еще больше малонаполненных групп, чем при k = 10, а также у 2, 3 и 5 групп соответственно равные частоты, что приводит в плосковершинному распределению. Интервал, равный 15, тоже не подходит.

При k = 8 наблюдаются две вершины, в двух группах равные частоты. И вообще распределение не является нормальным, т.к. частота в третьей группе ниже, чем во второй. Этот интервал также не подходит нам.

Выбирая окончательный вариант табличного представления вариационного ряда в нашем примере, следует остановиться на группировке с использованием 5 групп. Все группы вполне наполнены, наблюдается одна вершина, нет плосковершинного распределения.

Ниже представлены полигон и кумулята для вариационного ряда с использованием 5 групп.

Полигон распределения целесообразнее использовать для рядов, построенных по дискретному признаку. Если полигон строится по интервальному вариационному ряду, то в качестве значения признака берется середина интервала. По оси Х откладываются значения признака, по оси Y – частоты (частости).

Для построения полигона на основе абсолютных частот необходимо выделить столбец Count в таблице частот и щелкнуть на нем правой кнопкой мыши.

Полигон регионов России по значению показателя «Число собственных легковых автомобилей на 1000 человек» в 2001г. при k=5

Рис. 1.5

Для построения полигона по относительным частотам, кумуляты по абсолютным и относительным частотам выбираются соответственно столбцы Percent, Cumulative count , Cumulative percent в таблице частот.

Кумулята регионов России по значению показателя «Число собственных легковых автомобилей на 1000 человек» в 2001г. при k=5

Рис. 1.6

Полигон регионов России по значению показателя «Число собственных легковых автомобилей на 1000 человек» в 2001г. при k=5

Рис. 1.7

Кумулята регионов России по значению показателя «Число собственных легковых автомобилей на 1000 человек» в 2001г. при k=5

Рис. 1.8

Одним из приемов компактного изображения статистической совокупности, находящимся вне отечественной традиции, является "Box-and-Whisker Plot" — "ящик с усами". Рассматриваемая процедура обеспечивает как диагностическую, так и описательную информацию об исследуемой совокупности.

Для ее реализации запускаем процедуру Graphs/2D Graphs/Box Plots. В появившемся окне удобно сразу же выбрать интересующий нас тип графика (в поле Graph Type выбираем Box-Whiskers). Остальные свойства графика удобнее всего настроить, перейдя на закладку Advanced.

График появляется в вертикальном виде, однако, на практике принято рассматривать его горизонтально. Для того чтобы повернуть график на 90 градусов, нужно щелкнуть в поле графика правой кнопкой мыши и выбрать меню Graph Properties (All options). Далеепереходимкзакладке Graph layout: вполе Axis position вместофункции Standard выбираем Reserved, тоестьобратноеположениеосиабсцисс. НажимаемОК.

Диаграмма "Box-and-Whisker Plot" — "ящик с усами"

Рис.1.9

Метод "Box-and-Whisker Plot" также дает полезную информацию о концентрации, дисперсии и асимметрии распределения, но наряду с этим исследователь получает наглядное представление о том, что происходит на концах распределения.

В качестве дополнения отметим, что система дает также возможность получить нетрадиционное графическое представление о том, как соотносятся между собой эмпирическое распределение и его нормальная аппроксимация. Речь идет о графике "Hanging Histobars" или “Hanging Bars” (в весьма вольном переводе – «висячие полоски»). Канонизированного термина на русском языке нет, потому будем обозначать рассматриваемую процедуру как "HH-график".

Для его представления необходимо запустить процедуру Graphs/2D Graphs/Histograms и далее перейти к закладке Advanced.